全监督学习
『壹』 什么是有监督的学习,什么是无监督的学习,什
这个问题可以回答得很简单:是否有监督(supervised),就看输入数据是否有标签(label)。输入数据有标签,则为有监督学习,没标签则为无监督学习。
但根据知乎惯例,答案还是要继续扩展的。
首先看什么是学习(learning)?一个成语就可概括:举一反三。此处以高考为例,高考的题目在上考场前我们未必做过,但在高中三年我们做过很多很多题目,懂解题方法,因此考场上面对陌生问题也可以算出答案。机器学习的思路也类似:我们能不能利用一些训练数据(已经做过的题),使机器能够利用它们(解题方法)分析未知数据(高考的题目)?
最简单也最普遍的一类机器学习算法就是分类(classification)。对于分类,输入的训练数据有特征(feature),有标签(label)。所谓的学习,其本质就是找到特征和标签间的关系(mapping)。这样当有特征而无标签的未知数据输入时,我们就可以通过已有的关系得到未知数据标签。
在上述的分类过程中,如果所有训练数据都有标签,则为有监督学习(supervised learning)。如果数据没有标签,显然就是无监督学习(unsupervised learning)了,也即聚类(clustering)。
『贰』 什么是无监督学习
首先看什么是学习(learning)?一个成语就可概括:举一反三。此处以高考为例,高考的题目在上考场前我们未必做过,但在高中三年我们做过很多很多题目,懂解题方法,因此考场上面对陌生问题也可以算出答案。机器学习的思路也类似:我们能不能利用一些训练数据(已经做过的题),使机器能够利用它们(解题方法)分析未知数据(高考的题目)?
最简单也最普遍的一类机器学习算法就是分类(classification)。对于分类,输入的训练数据有特征(feature),有标签(label)。所谓的学习,其本质就是找到特征和标签间的关系(mapping)。这样当有特征而无标签的未知数据输入时,我们就可以通过已有的关系得到未知数据标签。
在上述的分类过程中,如果所有训练数据都有标签,则为有监督学习(supervised learning)。如果数据没有标签,显然就是无监督学习(unsupervised learning)了,也即聚类(clustering)。
(但有监督学习并非全是分类,还有回归(regression),此处不细说。)
目前分类算法的效果还是不错的,但相对来讲,聚类算法就有些惨不忍睹了。确实,无监督学习本身的特点使其难以得到如分类一样近乎完美的结果。这也正如我们在高中做题,答案(标签)是非常重要的,假设两个完全相同的人进入高中,一个正常学习,另一人做的所有题目都没有答案,那么想必第一个人高考会发挥更好,第二个人会发疯。
『叁』 监督学习和无监督学习的区别
机器学习的常用方法,主要分为有监督学习(supervised learning)和无监督学习(unsupervised learning)。
监督学习,就是人们常说的分类,通过已有的训练样本(即已知数据以及其对应的输出)去训练得到一个最优模型(这个模型属于某个函数的集合,最优则表示在某个评价准则下是最佳的),再利用这个模型将所有的输入映射为相应的输出,对输出进行简单的判断从而实现分类的目的,也就具有了对未知数据进行分类的能力。在人对事物的认识中,我们从孩子开始就被大人们教授这是鸟啊、那是猪啊、那是房子啊,等等。我们所见到的景物就是输入数据,而大人们对这些景物的判断结果(是房子还是鸟啊)就是相应的输出。当我们见识多了以后,脑子里就慢慢地得到了一些泛化的模型,这就是训练得到的那个(或者那些)函数,从而不需要大人在旁边指点的时候,我们也能分辨的出来哪些是房子,哪些是鸟。监督学习里典型的例子就是KNN、SVM。
无监督学习(也有人叫非监督学习,反正都差不多)则是另一种研究的比较多的学习方法,它与监督学习的不同之处,在于我们事先没有任何训练样本,而需要直接对数据进行建模。这听起来似乎有点不可思议,但是在我们自身认识世界的过程中很多处都用到了无监督学习。比如我们去参观一个画展,我们完全对艺术一无所知,但是欣赏完多幅作品之后,我们也能把它们分成不同的派别(比如哪些更朦胧一点,哪些更写实一些,即使我们不知道什么叫做朦胧派,什么叫做写实派,但是至少我们能把他们分为两个类)。无监督学习里典型的例子就是聚类了。聚类的目的在于把相似的东西聚在一起,而我们并不关心这一类是什么。因此,一个聚类算法通常只需要知道如何计算相似度就可以开始工作了。
『肆』 机器学习 一 监督学习和无监督学习的区别
监督学习,就是人们常说的分类,通过已有的训练样本(即已知数据以及其对回应答的输出)去训练得到一个最优模型(这个模型属于某个函数的集合,最优则表示在某个评价准则下是最佳的),再利用这个模型将所有的输入映射为相应的输出,对输出进行简单的判断从而实现分类的目的,也就具有了对未知数据进行分类的能力。在人对事物的认识中,我们从孩子开始就被大人们教授这是鸟啊、那是猪啊、那是房子啊,等等。我们所见到的景物就是输入数据,而大人们对这些景物的判断结果(是房子还是鸟啊)就是相应的输出。当我们见识多了以后,脑子里就慢慢地得到了一些泛化的模型,这就是训练得到的那个(或者那些)函数,从而不需要大人在旁边指点的时候,我们也能分辨的出来哪些是房子,哪些是鸟。监督学习里典型的例子就是KNN、SVM。
『伍』 什么是有监督学习,什么是无监督学习
监督学习
英汉词典解释
监督学习词性解释
【计】 supervised learning
supervised learning
supervised learning
监督学习
利用一组已知类别的样本调整分类器的参数,使其达到所要求性能的过程,也称为监督训练或有教师学习。正如人们通过已知病例学习诊断技术那样,计算机要通过学习才能具有识别各种事物和现象的能力。用来进行学习的材料就是与被识别对象属于同类的有限数量样本。监督学习中在给予计算机学习样本的同时,还告诉计算各个样本所属的类别。若所给的学习样本不带有类别信息,就是无监督学习。任何一种学习都有一定的目的,对于模式识别来说,就是要通过有限数量样本的学习,使分类器在对无限多个模式进行分类时所产生的错误概率最小。
不同设计方法的分类器有不同的学习算法。对于贝叶斯分类器来说,就是用学习样本估计特征向量的类条件概率密度函数。在已知类条件概率密度函数形式的条件下,用给定的独立和随机获取的样本集,根据最大似然法或贝叶斯学习估计出类条件概率密度函数的参数。例如,假定模式的特征向量服从正态分布,样本的平均特征向量和样本协方差矩阵就是正态分布的均值向量和协方差矩阵的最大似然估计。在类条件概率密度函数的形式未知的情况下,有各种非参数方法,用学习样本对类条件概率密度函数进行估计。在分类决策规则用判别函数表示的一般情况下,可以确定一个学习目标,例如使分类器对所给样本进行分类的结果尽可能与“教师”所给的类别一致,然后用迭代优化算法求取判别函数中的参数值。
在无监督学习的情况下,用全部学习样本可以估计混合概率密度函数,若认为每一模式类的概率密度函数只有一个极大值,则可以根据混合概率密度函数的形状求出用来把各类分开的分界面。
『陆』 监督学习是什么
学习不用功,需要人看着学习。
『柒』 有监督学习有哪些具体方法
您好。定期检查孩子的作业完成进度情况,检查孩子的课堂笔记本本。多提问孩子的英语政治历史的知识背诵~
『捌』 有监督和无监督学习都各有哪些有名的算法和深度学习
听他人说的:无监督与监督学习的区别在于一个无教学值,一个有教学值。但是,个人认为他们的区别在于无监督学习一般是采用聚簇等算法来分类不同样本。而监督学习一般是利用教学值与实际输出值产生的误差,进行误差反向传播修改权值来完成网络修正的。但是无监督学习没有反向传播修改权值操作,当然这里只是说的是特征提取阶段。