⑴ 遥感图像监督分类法

监督分类,又称训练分类法,即用被确认类别的样本像元去识别其他未知类别像元的过程。已被确认类别的样本像元是指那些位于训练区的像元。在这种分类中,分析者在图像上对每一种类别选取一定数量的训练区,计算机计算每种训练样区的统计或其他信息,每个像元和训练样本作比较,按照不同规则将其划分到和其最相似的样本类。
非监督分类,也称为聚类分析或点群分析。即在多光谱图像中搜寻、定义其自然相似光谱集群组的过程。非监督分类不需要人工选择训练样本,仅需极少的人工初始输入,计算机按一定规则自动地根据像元光谱或空间等特征组成集群组,然后分析者将每个组和参考数据比较,将其划分到某一类别中去。长期以来,已经发展了近百种不同的自然集群算法,如ISODATA、链状方法等。

⑵ 用ERDAS软件对遥感图像进行监督分类后,为什么遥感图像的背景也被分类了

监督分类是根据你选择的训练区来分类你没有分类的地物,这个是根据你影像的亮度值来区分的。这个说明你先选择的训练区的灰度值和你背景值是一样的。

⑶ envi中监督分类和非监督分类有什么区别各是怎么定义的

监督分类是需要学习训练的分类方法,如最大似然分类,人工神经网络分类,即是需要事先为每类地物在遥感图像上采集样本数据,之后通过学习训练过程才来分类;非监督分类不需要人工采集地物样本点数据,多是通过聚类的方法来自动分类,主要有isodata,k均值等.总体来说,监督分类的效果要优于非监督分类.

⑷ 什么是监督分类和非监督分类

监督分类又称训练场地法、训练分类法,是以建立统计识别函数为理论基础、依据典型样本训练方法进行分类的技术,即根据已知训练区提供的样本,通过选择特征参数,求出特征参数作为决策规则,建立判别函数以对各待分类影像进行的图像分类。

非监督分类是以不同影像地物在特征空间中类别特征的差别为依据的一种无先验类别标准的图像分类,是以集群为理论基础,通过计算机对图像进行集聚统计分析的方法。根据待分类样本特征参数的统计特征,建立决策规则来进行分类。

(4)图像监督分类扩展阅读

监督分类的主要优点如下:

(1)可根据应用目的和区域,充分利用先验知识,有选择地决定分类类别,避免出现不必要的类别;

(2)可控制训练样本的选择;

(3)可通过反复检验训练样本,来提高分类精度,避免分类严重错误;

(4)避免了非监督分类中对光谱集群组的重新归类。

缺点如下:

(1)其分类系统的确定、训练样本的选择,均人为主观因素较强,分析者定义的类别有可能并不是图像中存在的自然类别,导致各类别间可能出现重叠;分析者所选择的训练样本也可能并不代表图像中的真实情形;

(2)由于图像中同一类别的光谱差异,造成训练样本没有很好的代表性;

(3)训练样本的选取和评估需花费较多的人力、时间;

(4)只能识别训练样本中所定义的类别,若某类别由于训练者不知道或者其数量太少未被定义,则监督分类不能识别。

⑸ 实验十七 遥感图像监督分类处理

一、实验目的

通过使用ENVI的六种主要的遥感监督分类器——平行六面体分类、最小距离分类、马氏距离分类、最大似然分类、神经网络分类和支持向量机分类的命令,加深对遥感监督分类原理的理解,了解其技术实现过程,初步掌握其ENVI功能命令的基本使用操作。

二、实验内容

①桂林市TM 遥感影像平行六面体分类;②桂林市TM 遥感影像最小距离分类;③桂林市TM 遥感影像马氏距离分类;④桂林市TM 遥感影像最大似然分类;⑤桂林市TM 遥感影像神经网络分类;⑥桂林市TM 遥感影像支持向量机分类;⑦对6种分类结果进行比较分析。

三、实验要求

①平行六面体、最小距离、马氏距离、最大似然、神经网络和支持向量机六种分类方法在理论上比较复杂,为取得好的实验效果,要求实验前事先预习其原理,从理论上理解并掌握它们的特点和异同。②确定分类处理方法训练样本需要用到的已知地质资料,提前准备。③编写实验报告。④由于同时做六种分类处理工作量较大,可以根据实际课时情况选择做其中部分。最小距离分类为必须做的方法。

四、技术条件

①微型计算机;②灌阳地区QuickBird全色波段遥感数据;③ENVI软件;④Photoshop软件(ver.6.0以上)和ACDSee软件(ver.4.0以上)。

五、实验步骤

遥感影像监督分类可以分为四个过程:样本选择、执行监督分类、评价分类结果和分类后处理。具体操作步骤如下。

(一)定义训练

1.样本选择

(1)在ENVI主菜单中,选择“File>Open Image File”,打开灌阳地区QuickBird全色波段遥感数据,Band3、4、1合成RGB并使之显示在“Display”中,通过分析图像,选择耕地、林地、居民地和水体四种地物样本。

图17-1 ROI工具对话框

(2)在主图像窗口中,选择“Overlay>Region of Interest”,打开“ROI Tool”对话框,如图17-1所示。

(3)在“ROI Tool”对话框中,选择“Window”选项,可以在“Image”、“Scroll”或者“Zoom”窗口中绘制感兴趣区;在“ROI Name”字段输入样本的名称;在“Color”字段中,单击右键选择颜色。

(4)在“ROI Tool”对话框中,选择“ROI Type > Polygon”,在“Image”、“Scroll”或者“Zoom”窗口中绘制感兴趣区。

(5)完成一类感兴趣区的绘制后,在“ROI Tool”对话框中,选择【New Region】按钮,新建另一类样本种类,重复上述操作。

2.评价训练样本

在ROI对话框中,选择“Option>Compute ROI Separability”,打开待分类影像文件,选择所有定义的样本类型,可以计算样本的可分离性,如图17-2所示,表示各个样本类型之间的可分离性,用Jeffries-Matusita距离和转换分离度(Transformed Divergence)来表示。ENVI为每一个感兴趣区组合计算Jeffries-Matusita距离和Transformed Divergence,在对话框底部,根据可分离性值的大小,从小到大列出感兴趣区组合。这两个参数的值在0~2.0之间,大于1.9说明样本之间可分离性好,属于合格样本;小于1.8,需要重新选择样本;小于1,考虑将两类样本合成一类样本。

图17-2 样本可分离性计算报表

(二)执行监督分类

在ENVI主菜单中选择“Classificatoin>Supervisred>分类器类型”,可以根据分类的复杂度、精度需求等选择分类器。

1.平行六面体分类器

平行六面体用一条简单的判定规则对多波谱数据进行分类。判定边界在图像数据空间中形成了一个N维平行六面体。平行六面体的维数由来自每一种选择的分类平均值的标准差的阈值确定。如果像元值位于N 个被分类波段的低阈值与高阈值之间,则它归属于这一类。如果像元值落在多个类里,那么ENVI将这一像元归到最后一个匹配的类里。没有落在平行六面体的任何一类里的区域被称为无类别的。操作步骤如下:

(1)在ENVl主菜单栏中选择“Classification>Supervised>Parallelepiped”,在分类输入文件对话框中选择待分类遥感影像,打开“Parallelepiped Parameters”对话框,如图17-3所示。

图17-3 平行六面体分类器参数设置对话框

(2) Select Classes from Regions:点击【Select All Items】按钮,选择所有的训练样本。

(3) Set Max stdev from Mean:设置标准差阈值。有三种类型:不设置标准差阈值(None)、为所有类别设置一个标准差阈值(Single Value)和分别为每种类别设置一个标准差阈值(Multiple Values)。

(4)选择“Single Value”,在“Max stdev from Mean”文本框里输入标准差阈值。

(5)点击【Preview】按钮,可以预览分类结果。

(6)选择分类结果的输出路径及文件名。

(7)设置“Output Rule Images”:是否选择规则图像数据。

(8)设置完上述参数后,点击【OK】按钮执行分类处理。

2.最小距离分类器

最小距离分类用到每一个终端单元的均值矢量,计算每一个未知像元到每一类均值矢量的欧几里德距离。所有像元都被归为最近的一类,除非限定了标准差和距离的极限(这时,会出现一些像元因不满足选择的标准,而成为“无类别”),操作步骤如下:

(1)在ENVI主菜单栏中选择“Classification>Supervised>Minimum Distance”,在分类输入文件对话框中选择待分类遥感影像,打开“Minimum Distance”对话框,如图174所示。

图17-4 最小距离分类器参数设置对话框

(2) Select classes from Regions:点击【Select All Items】按钮,选择所有的训练样本。

(3) Set Max stdev from Mean:设置标准差阈值。有3种类型:不设置标准差阈值(None)、为所有类别设置一个标准差阈值(Single Value)和分别为每种类别设置一个标准差阈值(Multiple Values)。

(4)选择“Single Value”,在“Max stdev from Mean”文本框里输入标准差阈值。

(5) Set Max Distances Error:设置允许的最大距离误差,距离大于该值的像元将不被分入该类,如果不满足所有类别的最大距离误差,将会被归为未分类类型中,有3种类型:不设置最大距离误差(None)、为所有类别设置一个最大距离误差(Single Value)和分别为每种类别设置一个最大距离误差(Multiple Values)。

(6)点击【Preview】按钮,可以预览分类结果。

(7)选择分类结果的输出路径及文件名。

(8)设置“Output Rule Images”:是否选择规则图像数据。

(9)设置完上述参数后,点击【OK】按钮执行分类处理。

.3 马氏距离分类器

马氏距离分类是一个方向灵敏的距离分类器,分类时用到了统计。它与最大似然分类有些类似,但是假定所有类的协方差相等,所以是一种较快的方法。所有像元都被归到最临近的ROI类,除非用户限定了一个距离阈值(这时,如果一些像元不在阈值内,就会被划为无类别),操作步骤如下:

(1)在ENVI主菜单栏中选择“Classification>Supervised>Mahalanobis Distance”,在分类输入文件对话框中选择待分类遥感影像,打开“Mahalanobis Distance”对话框,如图17-5所示。

(2) Select Classes from Regions:点击【Select All Items】按钮,选择所有的训练样本。

图17-5 马氏距离分类器参数设置对话框

(3) Set Max Distances Error:设置允许的最大距离误差,距离大于该值的像元将不被分入该类,如果不满足所有类别的最大距离误差,将会被归为未分类类型中,有3种类型:不设置最大距离误差(None)、为所有类别设置一个最大距离误差(Single Value)和分别为每种类别设置一个最大距离误差(Multiple Values)。

(4)点击【Preview】按钮,可以预览分类结果。

(5)选择分类结果的输出路径及文件名。

(6)设置“Output Rule Images”:是否选择规则图像数据。

(7)设置完上述参数后,点击【OK】按钮执行分类处理。

4.最大似然分类器

最大似然分类假定每个波段每一类统计呈均匀分布,并计算给定像元属于一特定类别的可能性。除非选择一个可能性阈值,所有像元都将参与分类。每一个像元被归到可能性最大的那一类里。操作步骤如下:

(1)在ENVI主菜单栏中选择“Classification>Supervised>Maximum Likelihood”,在分类输入文件对话框中选择待分类遥感影像,打开“Maximum Likelihood Parameters”对话框,如图17-6所示。

(2) Select Classes from Regio:n点s击【Select All Items】按钮,选择所有的训练样本。

图17-6 最大似然分类器参数设置对话框

(3)Set Probability Threshold:设置似然度的阈值,有3种类型:不设置最大似然度阈值(None)、为所有类别设置一个最大似然度阈值(Single Value)和分别为每种类别设置一个最大似然度阈值(Multiple Values),如果选择Single Value,则在Probability Threshold文本框中输入一个0~1的值。

(4) Data Scale Factor:输入一个数据比例系数,这个比例系数是一个比值系数,用于将整形反射率或者辐射率数据转换为浮点型数据。例如,对于没有经过辐射定标的8bit数据,设定比例系数为255。

(5)点击【Preview】按钮可以预览分类结果。

(6)选择分类结果的输出路径及文件名。

(7)设置“Output Rule Images”:是否选择规则图像数据。

(8)设置完上述参数后,点击【OK】按钮执行分类处理。

5.神经网络分类器

用计算机模拟入脑的结构,用许多小的处理单元模拟生物的神经元,用算法实现人脑的识别、记忆、思考过程应用于图像分类,操作步骤如下:

(1)在ENVI主菜单栏中选择“Classificantion>Supervised>Neural Net”,在分类输入文件对话框中选择待分类遥感影像,打开“Neural Net Parameters”对话框,如图17-7所示。

(2)Select Classes from Regions:点击【Select All Items】按钮,选择所有的训练样本。

图17-7 神经网络分类器参数设置对话框

(3) Activation:选择活化函数,包括对数(Logistic)和双曲线(Hyperbolic)。

(4) Training Threshold Contnbution:输入训练贡献阈值(0~1)。该参数决定了与活化节点级别相关的内部权重的贡献量,它用于调节节点内部权重的变化。训练算法交互式地调整节点间的权重和节点阈值,从而使输出层和响应误差达到最小。将该参数设置为0将不会调整节点的内部权重。适当调整节点的内部权重可以生成一幅较好的分类图像,但是如果设置的权重过大,对分类结果会产生不良影响。

(5) Training Rate:设置权重调节速度(0~1)。参数值越大则使得训练速度越快,但也增加摆动或者使训练结果不收敛。

(6) Training Momentum:设置权重调节动量(0~1)。该值大于0时,在“Training Rate”文本框中输入较大值不会引起摆动。该值越大,训练的步幅越大。该参数的作用是促使权重沿当前方向改变。

(7)Training RMS Exit Criterai:指定RMS误差为何值时训练应该停止。RMS误差值在训练过程中将显示在图表中,当该值小于输入值时,即使还没有达到迭代次数,训练也会停止,然后开始进行分类。

(8) Number of Hidden Layers:输入所用隐藏层的数量。要进行线性分类,输入值为0;进行非线性分类,输入值应该大于或者等于1。

(9) Number of Training Iterations:输入用于训练的迭代次数。

(10) Min Output Activation Threshold:输入一个最小输出活化阈值。如果被分类像元的活化值小于该阈值,在输出的分类中该像元将被归入未分类中。

(11)选择分类结果的输出路径及文件名。

(12)设置“Output Rule Images”:是否选择规则图像数据。

(13)设置完上述参数后,点击【OK】按钮执行分类处理。

6.支持向量机分类器

支持向量机分类(SVM)是一种建立在统计学习理论基础上的机器学习方法。SVM可以自动寻找那些对分类有较大区分能力的支持向量,由此构造出分类器,可以将类与类之间的间隔最大化,因而有较好的推广性和较高的分类准确率,操作步骤如下:

(1)在ENVl主菜单栏中选择“Classification>Supervised>SupportVec tor Machine”,在分类输入文件对话框中选择待分类遥感影像,打开“Support Vector Machine Classification Parameters”对话框,如图17-8所示。

图17-8 支持向量机分类器参数设置对话框

(2) Select Classes From Regions:点击【Select All Items】按钮,选择所有的训练样本。

(3) Kemel Type下拉列表中的选项有:Linear、Polynomial、Radial Basis Function和Sigmoid。

若选择Polynomial,需要设置一个核心多项式(Degere of Kernel Polynomial)的次数用于SVM,最小值为1,最大值为6;使用向量机规则需要为Kernel指定“this Bias”,默认值为1;“Gamma in Kernel Function”参数设置为大于0的浮点型数据,默认值为输入图像波段数的倒数。

若选择“Radial Basis Function”,需设置“Gamma in Kernel Function”参数为大于0的浮点型数据,默认值为输入图像波段数的倒数。

若选择Sigmoid,需使用向量机规则需要为Kernel指定“this Bias”,默认值为1;设置“Gamma in Kernel Function”参数为大于0的浮点型数据,默认值为输入图像波段数的倒数。

(4) Penalty Parameter:为大于0的浮点型数据,这个参数控制了样本错误与分类刚性延伸之间的平衡,默认值为100。

(5)Pyramid Levels:设置分级处理等级,用于SVM训练和分类处理过程,如果这个值为0,将以原始分辨率处理,最大值随图像的大小改变。

(6) Pyramid Reclassification Threshold(0~1):当Pyramid Levels值大于0时,需要设置这个重分类阈值。

(7) Classification Probability Threshold(0~1):为分类设置概率阈值,如果一个像素计算得到所有的规则概率小于该值,该像素将不被分类。

(8)选择分类结果的输出路径及文件名。

(9)设置“Output Rule Images”:是否选择规则图像数据。

(10)设置完上述参数后,点击【OK】按钮执行分类处理。

(三)评价分类结果

在执行监督分类后,需要对分类结果进行评价,本次实验采用使用地表真实感兴趣区来计算混淆矩阵(Confusion Matrices)方法进行分类结果评价,操作步骤如下。

1.建立地表真实感兴趣区

可以在高分辨率图像上,通过目视解译获取各个分类的地表真实感兴趣区;也可以通过野外实地调查,根据调查数据生成地表真实感兴趣区,获取方法同“(一)定义训练”,为了同训练样本区别,我们使用“植被、城镇、河流、农田”作为地表真实感兴趣区名称。

2.计算混淆矩阵

(1)打开定义验证样本的文件(即灌阳地区QuickBird全色波段)以及图像分类结果,使之显示在“Available Band”列表中。

(2)在ENVI主菜单栏中选择“Basic>Region of Interest>Restore Saved ROI File”,打开地表真实感兴趣区文件。

(3)在ENVI主菜单栏中选择“Basic>Region of Interest>Restore ROIs via Map”,打开“Reconcile ROIs via Map”对话框(图179),选择相应的地表真实感兴趣区,点击【OK】按钮。

(4)在“Select Source File where ROI was Drawn”对话框中,选择定义验证样本的文件(即灌阳地区 QuickBird 全色波段),点击【OK】按钮。

(5)在“Select Destination File to Reconcile ROIs to”对话框中,选择匹配目标文件,也就是分类结果图像。

(6)在主菜单中选择“Classification>Post Classification> Confusion Matrix> Using Ground Truth ROIs”。

图17-9“Reconcile ROIs via Map”对话框

(7)在“Classification Input File”对话框中,选择分类结果图像。地表真实感兴趣区将被自动加载到“Match Classes Parameters”对话框中。

(8)在“Match Classes Parameters”对话框中,选择所要匹配的名称,然后点击【Add Combination】按钮,将地表真实感兴趣区与最终分类结果相匹配,类别之间的匹配将显示在对话框底部的列表中,如图17-10所示,点击【OK】按钮输出混淆矩阵。

图17-10“Match Classse Parameters”对话框

(9)在混淆矩阵输出窗口的“Confusion Matrix Parameters”对话框中,选择像素(Pixels)和百分比(Percent),如图17-11所示。

(10)点击【OK】按钮,输出混淆矩阵,在输出的混淆矩阵报表中,包含了总体分类精度、Kappa系数、混淆矩阵等几项评价指标。

图17-11 混淆矩阵输出对话框

(四)分类后处理

一般情况下,使用上述分类方法得到的结果难于达到最终应用的目的,所以对获取的分类结果需要进行一些处理,才能得到最终理想的分类结果。

图17-12 编辑分类名称和颜色

1.更改分类颜色、名称

(1)打开分类结果,并使之显示在“Display”窗口中。

(2)在分类结果主图像窗口中,选择“Tools>Color Mapping>Class Color Mapping”,打开“Class Color Mapping”对话框,如图17-12所示。

(3)从“Selected Classes”列表中选择需要修改的类别,改变其颜色或者名称。

(4)完成对需要修改类别的颜色、名称的修改后,选择“Options>Save Changes”保存修改内容。

(5)选择“File>Cancel”,关闭“Class Color Mapping”对话框。

2.聚类处理

分类结果中不可避免的会产生一些面积很小的图斑,从实际应用角度有必要对这些小图斑进行剔除或重新分类。目前,常用的方法有Majority/Minority分析、聚类处理和过滤处理,本次实验选择聚类处理方法对邻近的类似分类区聚类并合并。

聚类处理首先将被选的分类用一个扩大操作合并到一起,然后用参数对话框中指定了大小的变换核对分类图像进行侵蚀操作,具体操作步骤如下:

在ENVI主菜单栏中选择“Classification> Post Classification> Clump Classes”,在“Classification Input File”对话框中,选择分类结果图像,单击【OK】按钮,打开“Clump Parameters”对话框,如图17-13所示。Clump Parameters对话框参数设置如下。

(1)选择分类类别(Select Classes):单击【Select All Items】按钮选择所有类别;

(2)输入形态学算子大小(Rows和Cols):默认为3,3;

(3)选择输出路径及文件名,单击【OK】按钮,完成聚类处理。

3.分类统计

分类统计可以基于分类结果计算相关输入文件的统计信息,包括类别中的像元数、最大值、最小值、平均值以及类中每个波段的标准差等,还可以记录每类的直方图以及计算协方差矩阵、相关矩阵、特征值和特征向量,并显示所有分类的总结记录。

(1)在ENVI主菜单栏中,选择“Classification> Post Classification > Class Statistics”,在“Classification Input File”对话框中,选择分类结果图像,单击【OK】按钮。

(2)在“Statistics Input File”对话框中,选择一个用于计算统计信息的输入文件,点击【OK】按钮,打开“Class Selection”对话框(图17-14),在“Select Classes”列表中,选择想计算统计的类别名称,点击【OK】按钮,打开“Compute Statistics Parameters”对话框(图17-15),选择需要的统计项,包括以下统计类型。

图17-13 “Clump Parameters”对话框

图17-14 选择分类对话框

基本统计(Basic Stats):包括所有波段的最小值、最大值、均值和标准差,若该文件为多波段,还包括特征值。

直方图统计(Histograms):生成一个关于频率分布的统计直方图。

协方差统计(Covariance):包括协方差矩阵和相关矩阵以及特征值和特征向量。

(3)输出结果的方式包括3种:可以输出到屏幕显示、生成统计文件(.sta)和生成文本文件,其中生成的统计文件可以通过“Classification>Post Classification>View Statistics File”命令打开,选择输出路径及文件名,单击【OK】按钮,完成分类统计。

4.分类结果转矢量

(1)在ENVI主菜单栏中,选择“Classification>Post Classification>Classification to Vector”,在“Rasterto VectorInput Band”对话框中,选择分类结果图像,单击【OK】按钮,打开“Raster to Vector Parameters”对话框,如图17-16所示。

(2)选择需要被转换成矢量文件的类别,在“Output”标签中,使用箭头切换按钮选择“Single Layer”,把所有分类都输出到一个矢量层中;或者选择“One Layer per Class”,将每个所选分类输出到单独的矢量层。

(3)选择输出路径及文件名,单击【OK】按钮,完成分类结果转矢量文件。

图17-15 计算统计参数设置对话框

图17-16 栅格转为矢量参数设置

完成遥感影像监督分类后,分别利用平行六面体、最小距离、马氏距离、最大似然、神经网络和支持向量机这六种分类器对灌阳地区QuickBird遥感影像进行监督分类处理,利用混淆矩阵对六种分类结果进行评价,得出总体分类精度和Kappa系数。比较六种分类结果,用WORD文件记录,取名为《灌阳地区QuickBird遥感影像六种监督分类方法分类结果评价》,存入自己的工作文件夹。

六、实验报告

(1)简述实验过程。

(2)回答问题:①根据实验操作步骤及各步骤之间的关系,分析所做的监督分类方法在模型设计思想或算法上的共同特点。②通过目视解译,定性比较所获得的监督分类图像的图像识别效果优缺点。

实验报告格式见附录一。

⑹ 遥感:监督分类与非监督分类的区别

非监督分类运用1SODATA(Iterative Self-Organizing Data Analysis Technique )算法,完全按照像元的光谱特性进行统计分类,常常用于对分类区没有什么了解的情况。使用该方法时。原始图像的所有波段都参于分类运算,分类结果往往是各类像元数大体等比例。由于人为干预较少,非监督分类过程的自动化程度较高。非监督分类一般要经过以下几个步骤:初始分类、专题判别、分类合并、色彩确定、分类后处理、色彩重定义、栅格矢量转换、统计分析。
监督分类比非监督分类更多地要求用户来控制,常用于对研究区域比较了解的情况。在监督分类过程中,首先选择可以识别或者借助其它信息可以断定其类型的像元建立模板,然后基于该模板使计算机系统自动识别具有相同特性的像元。对分类结果进行评价后再对模板进行修改,多次反复后建立一个比较准确的模板,并在此基础上最终进行分类。监督分类一般要经过以下几个步骤:建立模板(训练样本)、评价模板、确定初步分类图、检验分类结果、分类后处理、分类特征统计、栅格矢量转换。

上面的这段话是我们遥感实验手册上的话, 我自我感觉在用ERDAS 8.6 时候 ,对监督分类和非监督分类的区别才有了深刻点的理解,简单的说监督分类是我们人为地选择好样本区 比如水体,植被 ,就像是告诉计算机“我圈起来的这种像素就代表水体噢”,这个对个人经验要求很高,很容易把有的颜色混淆,以至于少分几类,而非监督分类就是计算机自己将图像上的像元按像素分几类,一般如果你最后是要分成水体,植被,土地等几类,但是你设置的起码最初要分它的两倍,因为计算机识别的时候有可能有的最终可以归到一类,但是计算机不会知道它分类每一类代表什么,这个就要人为地输入每一类地物的名称。
[email protected] 如果你需要这方面的实验指导书就找我吧

⑺ 如何编写一个基于无监督的卷积神经网络实现图像的分类(python)

字段
字段是被视为类的一部分的对象的实例,通常用于保存类数据。例如,日历类可能具有一个包含当前日期的字段。
可以选择将字段声明为 static。这使得调用方在任何时候都能使用字段,即使类没有任何实例。
可以将字段声明为 readonly。只读字段只能在初始化期间或在构造函数中赋值。
static readonly 字段非常类似于常数,只不过 C# 编译器不能在编译时访问静态只读字段的值,而只能在运行时访问。
属性
属性是类中可以像类中的字段一样访问的方法。属性可以为类字段提供保护,以避免字段在对象不知道的情况下被更改。
属性使类能够以一种公开的方法获取和设置值,同时隐藏实现或验证代码。
get 属性访问器用于返回属性值,而 set 访问器用于分配新值。这些访问器可以有不同的访问级别。
value 关键字用于定义由 set 索引器分配的值。
不实现 set 方法的属性是只读的。
对于不需要任何自定义访问器代码的简单属性,可考虑选择使用自动实现的属性。看个示例:public class userInfo
{
//字段
private string name; //其它类不能访问
public int age; //其它类可访问,但既可赋值,也可取值。
//属性
public string Name //其它类可访问,但只能赋值,不能取值。
{
//注释了get就只能给Name赋值,而不能取值。反之依然
//get{return name;}
set
{
//TODO:可以调用方法等其它操作。 这里就是一个方法,方法名为set,参数为value;
name=value;
}
}
} .方法
方法定义类可以执行的操作。方法可以接受提供输入数据的参数,并且可以通过参数返回输出数据。方法还可以不使用参数而直接返回值。事件
事件向其他对象提供有关发生的事情(如单击按钮或成功完成某个方法)的通知。事件是使用委托定义和触发的。

⑻ 什么是监督分类和非监督分类

监督分类 (supervised classification)又称训练场地法,是以建立统计识别函数为理论基础,依内据典型样本训练容方法进行分类的技术。即根据已知训练区提供的样本,通过选择特征参数,求出特征参数作为决策规则,建立判别函数以对各待分类影像进行的图像分类,是模式识别的一种方法。要求训练区域具有典型性和代表性。判别准则若满足分类精度要求,则此准则成立;反之,需重新建立分类的决策规则,直至满足分类精度要求为止。常用算法有:判别分析、最大似然分析、特征分析、序贯分析和图形识别等。
非监督分类是以不同影像地物在特征空间中类别特征的差别为依据的一种无先验(已知)类别标准的图像分类,是以集群为理论基础,通过计算机对图像进行集聚统计分析的方法。根据待分类样本特征参数的统计特征,建立决策规则来进行分类。而不需事先知道类别特征。把各样本的空间分布按其相似性分割或合并成一群集,每一群集代表的地物类别,需经实地调查或与已知类型的地物加以比较才能确定。是模式识别的一种方法。一般算法有:回归分析、趋势分析、等混合距离法、集群分析、主成分分析和图形识别等。

⑼ 遥感影像监督分类有什么好的方法

根据已知训练区提供的样本,通过计算选择特征参数,建立判别函数以对各待分类影像进行的图像分类
监督分类 (supervised classification)又称训练场地法,是以建立统计识别函数为理论基础,依据典型样本训练方法进行分类的技术。即根据已知训练区提供的样本,通过选择特征参数,求出特征参数作为决策规则,建立判别函数以对各待分类影像进行的图像分类,是模式识别的一种方法。要求训练区域具有典型性和代表性。判别准则若满足分类精度要求,则此准则成立;反之,需重新建立分类的决策规则,直至满足分类精度要求为止。常用算法有:判别分析、最大似然分析、特征分析、序贯分析和图形识别等。
过程:

1、选择训练区(代表性,完整性,多个样区)

2、提取统计信息(进行多元统计分析,训练样本的有效评价,样本纯化)

3、选择合适的监督分类算法(平行算法,最小距离法,最大似然法(至今应用最广),波谱角分类法)

4、计算机自动分类

5、分类精度评价(非位置精度,位置精度--混淆矩阵)

优点:

1、 可充分利用分类地区的先验知识,预先确定分类的类别;

2、 可控制训练样本的选择,并可通过反复检验训练样本,以提高分类精度,避免分类中的严重错误

3、 避免了非监督分类中对光谱集群组的重新归类。

缺点:

1、人为主观因素较强;

2、训练样本的选取和评估需花费较多的人力时间;

3、只能识别训练样本中所定义的类别,从而影响分类结果。