监督类数据
❶ 监督分类的各种方法的定义合算法或者公式
监督分类 (supervised classification)又称训练场地法,是以建立统计识别函数为理论基础,依据典型样本训练方法进行分类的技术。即根据已知训练区提供的样本,通过选择特征参数,求出特征参数作为决策规则,建立判别函数以对各待分类影像进行的图像分类,是模式识别的一种方法。要求训练区域具有典型性和代表性。判别准则若满足分类精度要求,则此准则成立;反之,需重新建立分类的决策规则,直至满足分类精度要求为止。常用算法有:判别分析、最大似然分析、特征分析、序贯分析和图形识别等。
分类方法的定义:
平行六面体法 平行六面体将用一条简单的判定规则对多光谱数据进行分类。判定边界在影像数据空间中是否行成了一个N维德平行六面体。平行六面体的尺度是由标准差阈值所确定的,而该标准差阈值则是根据每种所选类的均值求出的
最大似然法 假定每个波段中的每类的统计都呈现正态分布,并将计算出给定象元都被归到概率最大的哪一类里
最小距离法 使用了每个感兴趣区的均值矢量来计算每个未知象元到每一类均值矢量的欧氏距离,除非用户指定了标准差和距离的阈值,否则所有象元都将分类到感兴趣区中最接近的那一类
马氏距离法 是一个方向灵敏的距离分类器,分类时将使用到统计信息,与最大似然法有些类似,但是她假定了所有类的协方差都相等,所以它是一种较快的分类方法
二值编码分类法 根据波段值落在均值的上或下方,把数据波普和端元波普编码为0或1,异或逻辑函数用来将每种编码后的参考波普同编码后的数据波谱进行比较,生成一副分类影像
波谱角填图分类法 是一个基于物理的波谱分类法,它是用N维角度将象元与参考波谱进行匹配,此方法将波谱看成是空间中的矢量,矢量的维数就等于波段的个数,通过计算波谱间的角度,来判断连个波谱间的相似程度
❷ 图案卷半监督分类代码中数据集是什么文件,我用自己的.mat数据集该如何预处理
你曾说,富贵又如何,柴门竹篱花下
❸ 为什么用erdas做监督分类的时候一添加数据就会出现这个怎么办
ERDAS不支持中文路径所至,改个名字就好了
❹ 监督分类和非监督分类的研究现状
非监督分类是指人们事先对分类过程不施加任何的先验知识,而仅凭数据(遥感影像版地物的光谱特征权的分布规律),即自然聚类的特性,进行“盲目”的分类;其分类的结果只是对不同类别达到了区分,但并不能确定类别的属性,亦即:非监督分类只能把样本区分为若干类别,而不能给出样本的描述;其类别的属性是通过分类结束后目视判读或实地调查确定的。非监督分类也称聚类分析。一般的聚类算法是先选择若干个模式点作为聚类的中心。每一中心代表一个类别,按照某种相似性度量方法(如最小距离方法)将各模式归于各聚类中心所代表的类别,形成初始分类。然后由聚类准则判断初始分类是否合理,如果不合理就修改分类,如此反复迭代运算,直到合理为止。与监督法的先学习后分类不同,非监督法是边学习边分类,通过学习找到相同的类别,然后将该类与其它类区分开,但是非监督法与监督法都是以图像的灰度为基础。通过统计计算一些特征参数,如均值,协方差等进行分类的。所以也有一些共性。
❺ 监督分类 非监督分类 区别
监督分类是需要学习训练的分类方法,如最大似然分类,人工神经网络分类,即是需要回事先为每类地物在遥感图答像上采集样本数据,之后通过学习训练过程才来分类;非监督分类不需要人工采集地物样本点数据,多是通过聚类的方法来自动分类,主要有isodata,k均值等.总体来说,监督分类的效果要优于非监督分类.
❻ envi中监督分类和非监督分类有什么区别各是怎么定义的
监督分类是需要学习训练的分类方法,如最大似然分类,人工神经网络分类,即是需要事先为每类地物在遥感图像上采集样本数据,之后通过学习训练过程才来分类;非监督分类不需要人工采集地物样本点数据,多是通过聚类的方法来自动分类,主要有isodata,k均值等.总体来说,监督分类的效果要优于非监督分类.
❼ 什么是监督分类和非监督分类
监督分类又称训练场地法、训练分类法,是以建立统计识别函数为理论基础、依据典型样本训练方法进行分类的技术,即根据已知训练区提供的样本,通过选择特征参数,求出特征参数作为决策规则,建立判别函数以对各待分类影像进行的图像分类。
非监督分类是以不同影像地物在特征空间中类别特征的差别为依据的一种无先验类别标准的图像分类,是以集群为理论基础,通过计算机对图像进行集聚统计分析的方法。根据待分类样本特征参数的统计特征,建立决策规则来进行分类。
(7)监督类数据扩展阅读
监督分类的主要优点如下:
(1)可根据应用目的和区域,充分利用先验知识,有选择地决定分类类别,避免出现不必要的类别;
(2)可控制训练样本的选择;
(3)可通过反复检验训练样本,来提高分类精度,避免分类严重错误;
(4)避免了非监督分类中对光谱集群组的重新归类。
缺点如下:
(1)其分类系统的确定、训练样本的选择,均人为主观因素较强,分析者定义的类别有可能并不是图像中存在的自然类别,导致各类别间可能出现重叠;分析者所选择的训练样本也可能并不代表图像中的真实情形;
(2)由于图像中同一类别的光谱差异,造成训练样本没有很好的代表性;
(3)训练样本的选取和评估需花费较多的人力、时间;
(4)只能识别训练样本中所定义的类别,若某类别由于训练者不知道或者其数量太少未被定义,则监督分类不能识别。
❽ 什么是监督分类和非监督分类
监督分类 (supervised classification)又称训练场地法,是以建立统计识别函数为理论基础,依内据典型样本训练容方法进行分类的技术。即根据已知训练区提供的样本,通过选择特征参数,求出特征参数作为决策规则,建立判别函数以对各待分类影像进行的图像分类,是模式识别的一种方法。要求训练区域具有典型性和代表性。判别准则若满足分类精度要求,则此准则成立;反之,需重新建立分类的决策规则,直至满足分类精度要求为止。常用算法有:判别分析、最大似然分析、特征分析、序贯分析和图形识别等。
非监督分类是以不同影像地物在特征空间中类别特征的差别为依据的一种无先验(已知)类别标准的图像分类,是以集群为理论基础,通过计算机对图像进行集聚统计分析的方法。根据待分类样本特征参数的统计特征,建立决策规则来进行分类。而不需事先知道类别特征。把各样本的空间分布按其相似性分割或合并成一群集,每一群集代表的地物类别,需经实地调查或与已知类型的地物加以比较才能确定。是模式识别的一种方法。一般算法有:回归分析、趋势分析、等混合距离法、集群分析、主成分分析和图形识别等。
❾ 在gis中打开监督分类图,分类类型的名称是字母,怎么改变成林地,水域之类的,要能输出数据
你可以记住他们之间的对应关系,在输出的数据里面整体修改即可
❿ 监督分类
监督分类一般是先在图像中选取已知样本 ( 训练区) 的统计数据,从中找出分类的参数、条件,建立判别函数,然后对整个图像或待分类像元作出判别归类。遥感图像处理中常用的监督分类方法有最小距离法、贝叶斯线性和非线性判别法 ( 最大似然法) 、多级分割法 ( 平行六面体法) 、特征曲线法 ( 光谱角法) 、马氏距离法、费歇尔线性判别法等。
1. 最小距离法
最小距离法的基本原理是根据已知类别或训练样本的模式特征选择特征参数并建立判别函数,通过待分类像元与各类别均值向量的距离比较而将其划分至与之距离最小的类别之中。为保证分类精度,需要对特征空间进行正交变换 ( 如 K-L 变换等) 。首先在图像显示屏上选出训练样区,并且从图像数据中求出训练样区各个波段的均值和标准差; 而后再去计算其他各像元的亮度值向量到训练区波谱均值向量之间的距离。该方法依据的分类指标为绝对值距离或欧氏距离,其中欧氏距离最为常用。如果距离小于指定的阈值 ( 一般取标准差的倍数) ,且与某一类的距离最近,遂将该像元归为某类。该分类法的精度取决于训练样区 ( 地物类别) 的多少和样本区的统计精度。由于计算简便,并可按像元顺序逐一扫描归类,一般分类效果也较好,因而是较常用的监督分类方法。
图 4-23 ISODATA 方法框图
2. 贝叶斯线性和非线性判别法 ( 最大似然法)
该方法假定各类别总体的概率密度分布均为正态分布,通过待分类像元与各类别的似然率比较而将其划分至与之似然率最大的类别之中。其分类指标为似然率 ( 条件概率) 。它是用贝叶斯判别原则进行分析的一种非线性监督分类。简单地说,它可以假定已知的或确定的训练样区典型标准的先验概率,然后把某些特征归纳到某些类型的函数中,根据损失函数的情况,在损失最小时获得最佳判别。该法分类效果较好,但运算量较大。
3. 多级分割法 ( 平行六面体法)
多级分割法的基本原理是在特征空间中每个特征变量轴上设置一系列的分割点 ( 依据训练数据的统计特征进行分割点的确定) ,将多维特征空间划分为互不重叠的子空间,每个子空间对应于一个分类类别,将分类像元归属于与其所在子空间相对应的类别。为提高分类精度,需要对特征空间进行正交变换 ( 如 K-L 变换等) 。
4. 特征曲线法 ( 光谱角法)
特征曲线法的基本原理是以地物的特征参数曲线 ( 如地物波谱特性曲线) 之间的相似系数 ( 变量空间中样品点向量之间的夹角余弦) 作为分类判别指标。
5. 马氏距离法
马氏距离法充分考虑了多维变量空间中反映样本点随机概率密度分布特征的协方差矩阵,当各变量正交时其相当于加权的欧氏距离,故该方法相对于最小距离法等方法而言一般具有较好的分类识别效果。
监督分类的结果明确,分类精度相对较高,但对训练样本的要求较高,因此,使用时须注意应用条件,某一地区建立的判别式对别的地区不一定完全适用。此外,有时训练区并不能完全包括所有的波谱样式,会造成一部分像元找不到归属。故实际工作中,监督分类和非监督分类常常是配合使用,互相补充的,使分类的效率和精度进一步提高。
基于最大似然原理的监督法分类的优势在于如果空间聚类呈现正态分布,那么它会减小分类误差,而且分类速度较快。监督法分类主要缺陷是必须在分类前圈定样本性质单一的训练样区,而这可以通过非监督法来进行,即通过非监督法将一定区域聚类成不同的单一类别,监督法再利用这些单一类别区域 “训练”计算机。通过 “训练”后的计算机将其他区域分类完成,这样避免了使用速度比较慢的非监督法对整个影像区域进行分类,在分类精度得到保证的前提下,分类速度得到了提高。具体可按以下步骤进行。
第一步,选择一些有代表性的区域进行非监督分类。这些区域尽可能包括所有感兴趣的地物类别。这些区域的选择与监督法分类训练样区的选择要求相反,监督法分类训练样区要求尽可能单一。而这里选择的区域包含类别尽可能得多,以便使所有感兴趣的地物类别都能得到聚类。
第二步,获得多个聚类类别的先验知识。这些先验知识的获取可以通过判读和实地调查得到。聚类的类别作为监督分类的训练样区。
第三步,特征选择。选择最适合的特征图像进行后续分类。
第四步,使用监督法对整个影像进行分类。根据前几步获得的先验知识以及聚类后的样本数据设计分类器,并对整个影像区域进行分类。
第五步,输出标记图像。由于分类结束后影像的类别信息也已确定,所以可以将整幅影像标记为相应类别输出。
图像分类处理目前在农林、土地资源遥感调查中应用较广。对于地质体的分类,由于干扰因素较大,一般要经变换 ( 比值变换、K-L 变换等) 处理的图像再作分类处理,现常用于岩性填图或热液蚀变填图等,随着计算机软硬件技术的日益成熟,图像的计算机分类将应用得越来越普遍。
复习思考题
1. 数字图像的基本概念是什么?
2. 数字图像的存储格式有哪几类?
3. 遥感单波段和多波段数据基本统计量有哪些?
4. 什么是辐射误差? 其主要来源有哪些?
5. 什么是大气校正? 试说明回归分析和直方图校正的原理。
6. 简述利用重采样法进行几何精校正的过程。
7. 什么是投影变换、图像镶嵌和图像分幅?
8. 什么是线性扩展和非线性扩展? 常用非线性增强方法有哪几种?
9. 什么是多波段假彩色合成?
10. 比值、差值增强的基本功能是什么?
11. 滤波增强的主要目的是什么? 常用的方法有哪些?
12. K - L 变换和 K-T 变换的主要作用是什么?
13. 什么是非监督分类? 本章介绍了哪几种方法?
14. 什么是监督分类? 有哪几种方法?
15. 简述监督分类与非监督分类的区别,各有何优点和适用条件。