1. 关于铝合金时效的问题

这种模拟烘烤的时间这么短弥散沉淀强化效果肯定不明显,应该属于欠内时效范畴;我遇到过一个客容户也用过这种“热处理”的方式,提供给他们的材料是T6状态,他们这么做说是可以消除内部应力,减少加工变形。毕竟T6和T66价格有一定差距

2. 请简述铝合金时效过程,谢谢

铝合金时效强化原理
铝合金的时效硬化是一个相当复杂的过程,它不仅决定于合金的组成、时效工艺,还取决于合金在生产过程中缩造成的缺陷,特别是空位、位错的数量和分布等。目前普遍认为时效硬化是溶质原子偏聚形成硬化区的结果。
铝合金在淬火加热时,合金中形成了空位,在淬火时,由于冷却快,这些空位来不及移出,便被“固定”在晶体内。这些在过饱和固溶体内的空位大多与溶质原子结合在一起。由于过饱和固溶体处于不稳定状态,必然向平衡状态转变,空位的存在,加速了溶质原子的扩散速度,因而加速了溶质原子的偏聚。
硬化区的大小和数量取决于淬火温度与淬火冷却速度。淬火温度越高,空位浓度越大,硬化区的数量也就越多,硬化区的尺寸减小。淬火冷却速度越大,固溶体内所固定的空位越多,有利于增加硬化区的数量,减小硬化区的尺寸。
沉淀硬化合金系的一个基本特征是随温度而变化的平衡固溶度,即随温度增加固溶度增加,大多数可热处理强化的的铝合金都符合这一条件。沉淀硬化所要求的溶解度-温度关系,可用铝铜系的Al-4Cu合金说明合金时效的组成和结构的变化。图3-1铝铜系富铝部分的二元相图,在548℃进行共晶转变L→α+θ(Al2Cu)。铜在α相中的极限溶解度5.65%(548℃),随着温度的下降,固溶度急剧减小,室温下约为0.05%。
在时效热处理过程中,该合金组织有以下几个变化过程:
形成溶质原子偏聚区-G·P(Ⅰ)区
在新淬火状态的过饱和固溶体中,铜原子在铝晶格中的分布是任意的、无序的。时效初期,即时效温度低或时效时间短时,铜原子在铝基体上的某些晶面上聚集,形成溶质原子偏聚区,称G·P(Ⅰ)区。G·P(Ⅰ)区与基体α保持共格关系,这些聚合体构成了提高抗变形的共格应变区,故使合金的强度、硬度升高。
G·P区有序化-形成G·P(Ⅱ)区
随着时效温度升高或时效时间延长,铜原子继续偏聚并发生有序化,即形成G·P(Ⅱ)区。它与基体α仍保持共格关系,但尺寸较G·P(Ⅰ)区大。它可视为中间过渡相,常用θ”表示。它比G·P(Ⅰ)区周围的畸变更大,对位错运动的阻碍进一步增大,因此时效强化作用更大,θ”相析出阶段为合金达到最大强化的阶段。
形成过渡相θ′
随着时效过程的进一步发展,铜原子在G·P(Ⅱ)区继续偏聚,当铜原子与铝原子比为1:2时,形成过渡相θ′。由于θ′的点阵常数发生较大的变化,故当其形成时与基体共格关系开始破坏,即由完全共格变为局部共格,因此θ′相周围基体的共格畸变减弱,对位错运动的阻碍作用亦减小,表现在合金性能上硬度开始下降。由此可见,共格畸变的存在是造成合金时效强化的重要因素。
形成稳定的θ相
过渡相从铝基固溶体中完全脱溶,形成与基体有明显界面的独立的稳定相Al2Cu,称为θ相此时θ相与基体的共格关系完全破坏,并有自己独立的晶格,其畸变也随之消失,并随时效温度的提高或时间的延长,θ相的质点聚集长大,合金的强度、硬度进一步下降,合金就软化并称为“过时效”。θ相聚集长大而变得粗大。
铝-铜二元合金的时效原理及其一般规律对于其他工业铝合金也适用。但合金的种类不同,形成的G·P区、过渡相以及最后析出的稳定性各不相同,时效强化效果也不一样。几种常见铝合金系的时效过程及其析出的稳定相列于表3-1。从表中可以看到,不同合金系时效过程亦不完全都经历了上述四个阶段,有的合金不经过G·P(Ⅱ)区,直接形成过渡相。就是同一合金因时效的温度和时间不同,亦不完全依次经历时效全过程,例如有的合金在自然时效时只进行到G·P(Ⅰ)区至G·P(Ⅱ)区即告终了。在人工时效,若时效温度过高,则可以不经过G·P区,而直接从过饱和固溶体中析出过渡相,合计时效进行的程度,直接关系到时效后合金的结构和性能。

3. 铝合金时效的基本过程

铝合金的热处理不同于碳钢,其熔点低,易过热过烧,加热温度的偏差范围小,对温度仪的精度要求高。若加热保温过于偏差,则可能达不到强化的目的。因此,对于锻铝合金的加热炉温度的控制是整个热处理过程的关键。根据试验结果分析:人工时效温度的高低与时间的长短有很大关系。较高的时效温度,可以缩短保温时间:较低的时效温度则需要延长保温的时间。用前者方法处理,同一炉试件检出的硬度数据,离散性较大,批量生产难以把握产品的质量,而后者受试件的合格率较高,能够保证强化工艺的质量要求,但工艺成本显著增加。在这两者之间,必然有一个比较合理的可行区间。经多次反复试验,我们找到如下的加热温度和时间的关系,这对锻铝试件的强化处理较为适合。

掌握了热处理工艺,并不等于说锻铝合金的强化问题已经解决,若操作不当,同样会导致失败。在处理的过程中应注意以下几点:

1、被加热的工件在炉腔内须排列整齐,且阳温使之受热均匀。

2、温度的调整与受试件的形状及其实体尺寸也有一定的关系;

淬火转移的时间尽可能短,一般时间t<6秒;

3、要求力热炉的温控仪完好,性能稳定,同时也要避免炉腔余温的热惯性引起的温度偏差。这就要求我们及时监控、调整加热的温度。如此,就可以满足工件的强化质量要求。

三、实践小结

将实验室的试验成果移植到生产车间实施批量生产,操作人员同样需要熟悉设备,熟练工艺步骤等适应过程。该项成果经过一年多的实际应用,日趋成熟,在日常生产中,抽检合格率在96%以上。

从技术进步的角度入手,把学校的教学科研活动直接与工厂的生产实际相结合,充分发挥各自的优势,实践证明效果良好。厂校间采取多种形式开展技术协作活动,为推动社会工业品生产的发展具有一定的实际意义。■

4. 铝合金时效后会有哪些变化。

铝合金时效强化原理
铝合金的时效硬化是一个相当复杂的过程,它不仅决定于合金的组成、时效工艺,还取决于合金在生产过程中缩造成的缺陷,特别是空位、位错的数量和分布等。目前普遍认为时效硬化是溶质原子偏聚形成硬化区的结果。
铝合金在淬火加热时,合金中形成了空位,在淬火时,由于冷却快,这些空位来不及移出,便被“固定”在晶体内。这些在过饱和固溶体内的空位大多与溶质原子结合在一起。由于过饱和固溶体处于不稳定状态,必然向平衡状态转变,空位的存在,加速了溶质原子的扩散速度,因而加速了溶质原子的偏聚。
硬化区的大小和数量取决于淬火温度与淬火冷却速度。淬火温度越高,空位浓度越大,硬化区的数量也就越多,硬化区的尺寸减小。淬火冷却速度越大,固溶体内所固定的空位越多,有利于增加硬化区的数量,减小硬化区的尺寸。
沉淀硬化合金系的一个基本特征是随温度而变化的平衡固溶度,即随温度增加固溶度增加,大多数可热处理强化的的铝合金都符合这一条件。沉淀硬化所要求的溶解度-温度关系,可用铝铜系的Al-4Cu合金说明合金时效的组成和结构的变化。图3-1铝铜系富铝部分的二元相图,在548℃进行共晶转变L→α+θ(Al2Cu)。铜在α相中的极限溶解度5.65%(548℃),随着温度的下降,固溶度急剧减小,室温下约为0.05%。
在时效热处理过程中,该合金组织有以下几个变化过程:
形成溶质原子偏聚区-G·P(Ⅰ)区
在新淬火状态的过饱和固溶体中,铜原子在铝晶格中的分布是任意的、无序的。时效初期,即时效温度低或时效时间短时,铜原子在铝基体上的某些晶面上聚集,形成溶质原子偏聚区,称G·P(Ⅰ)区。G·P(Ⅰ)区与基体α保持共格关系,这些聚合体构成了提高抗变形的共格应变区,故使合金的强度、硬度升高。
G·P区有序化-形成G·P(Ⅱ)区
随着时效温度升高或时效时间延长,铜原子继续偏聚并发生有序化,即形成G·P(Ⅱ)区。它与基体α仍保持共格关系,但尺寸较G·P(Ⅰ)区大。它可视为中间过渡相,常用θ”表示。它比G·P(Ⅰ)区周围的畸变更大,对位错运动的阻碍进一步增大,因此时效强化作用更大,θ”相析出阶段为合金达到最大强化的阶段。
形成过渡相θ′
随着时效过程的进一步发展,铜原子在G·P(Ⅱ)区继续偏聚,当铜原子与铝原子比为1:2时,形成过渡相θ′。由于θ′的点阵常数发生较大的变化,故当其形成时与基体共格关系开始破坏,即由完全共格变为局部共格,因此θ′相周围基体的共格畸变减弱,对位错运动的阻碍作用亦减小,表现在合金性能上硬度开始下降。由此可见,共格畸变的存在是造成合金时效强化的重要因素。
形成稳定的θ相
过渡相从铝基固溶体中完全脱溶,形成与基体有明显界面的独立的稳定相Al2Cu,称为θ相此时θ相与基体的共格关系完全破坏,并有自己独立的晶格,其畸变也随之消失,并随时效温度的提高或时间的延长,θ相的质点聚集长大,合金的强度、硬度进一步下降,合金就软化并称为“过时效”。θ相聚集长大而变得粗大。
铝-铜二元合金的时效原理及其一般规律对于其他工业铝合金也适用。但合金的种类不同,形成的G·P区、过渡相以及最后析出的稳定性各不相同,时效强化效果也不一样。几种常见铝合金系的时效过程及其析出的稳定相列于表3-1。从表中可以看到,不同合金系时效过程亦不完全都经历了上述四个阶段,有的合金不经过G·P(Ⅱ)区,直接形成过渡相。就是同一合金因时效的温度和时间不同,亦不完全依次经历时效全过程,例如有的合金在自然时效时只进行到G·P(Ⅰ)区至G·P(Ⅱ)区即告终了。在人工时效,若时效温度过高,则可以不经过G·P区,而直接从过饱和固溶体中析出过渡相,合计时效进行的程度,直接关系到时效后合金的结构和性能。

5. 铝合金时效状态

6063 T5
由高温成型过程冷却,然后进行人工时效的状态。
适用于由高温成型过程冷却后,不经过冷加工(可进行矫直、矫平,但不影响力学性能极限),予以人工时效的产品。

6063T6
由固溶热处理后进行人工时效的状态。
适用于由固溶热处理后,不再进行冷加工(可进行矫直、矫平,但不影响力学性能极限)的产品。

T4
固溶热处理后自然时效至基本稳定的状态。适用于固溶热处理后,不在进行冷加工(可进行矫直、矫平,但不影响力学性能极限)的产品

6063合金一般做T4和T6状态:
他们的物理性能的区别:
状态 拉伸强度 屈服强度 延伸率 硬度(a) 剪切强度 疲劳强度(b)
MPa ksi MPa ksi 样品厚度
T4 241 35 145 21 22 65 165 24 97 14
T6 310 45 276 40 12 95 207 30 97 14

6. 什么是铝材时效

时效的意思就是:铝材挤压出是热挤压,挤压出后要自然冷却或者进行水冷!自然冷却就是时效!!!

7. 铝合金时效同不时效怎样识别

固溶处理:
指将合金加热到高温单相区恒温保持,使过剩相充分溶解到固溶体中后快速冷却,以得到过饱和固溶体的热处理工艺。
目的:
①主要是改善钢和合金的塑性和韧性,为沉淀硬化处理作好准备等。
②使合金中各种相充分溶解,强化固溶体,并提高韧性及抗蚀性能,消除应力与软化,以便继续加工或成型。
时效处理:
指金属或合金工件(如低碳钢等)经固溶处理,从高温淬火或经过一定程度的冷加工变形后,在较高的温度放置或室温保持其性能,形状,尺寸随时间而变化的热处理工艺。
一、分类:
①若采用将工件加热到较高温度,并较短时间进行时效处理的时效处理工艺,称为人工时效处理。
②若将工件放置在室温或自然条件下长时间存放而发生的时效现象,称为自然时效处理。
③第三种方式是振动时效,从80年代初起逐步进入使用阶段,振动时效处理在不加热也不像自然时效那样费时的情况下,给工件施加一定频率的振动使其内应力得以释放,从而达到时效的目的。
二、目的:
消除工件的内应力,稳定组织和尺寸,改善机械性能等。

8. 铝合金的预时效什么意思

铝合金时效(aluminium alloy aging) :可热处理强化铝合金淬火后停放在室温或较高温度下以提高性能的方法。这是铝合金热处理常用的方法之一。室温下进行的时效称“自然时效”,在高于室温下进行的时效称“人工时效”。时效处理是提高铝合金力学性能和改善理化性能的重要手段。时效硬化现象最先由德国学者维尔姆(A wilm) 于1906年在研究铝一铜一镁系硬铝合金时发现,之后在其他铝合金系中也发现了这种现象。1938年,法国学者纪尼埃(A.Guinier)和比利时学者普雷斯顿(G.D,Pr韶ton)各自独立地阐明了铝合金的时效硬化是由溶 质原子形成的富集区(G.P.区)所致。其后,人们对铝合金的时效行为进行了大量的研究。在采用电子显微镜直接观察时效的微观结构变化后,对铝合金时效本质有了更加深入的了解。可热处理强化铝合金,淬火后形成过饱和固溶体,在室温或稍高温度中加热能发生分解,其过程通常包括G.P.区、亚稳定相(铝铜系合金用少和『表示,铝铜 镇系合金用夕和S‘表示,铝镬硅系合金用酬和团表示,铝锌镁系和铭锌镬铜系合金用丫和丫表示)和稳定相 (。,s,日,,,T)三个阶段。G.P.区是与铝基体完全共格的,亚稳定相与铝基体部分共格,稳定相与铝基体非共格。共格或部分共格都能引起铝基体晶格的畸变,因而导致铝合金硬度和强度的升高以及其他性能的变化。当析出非共格的稳定相时,合金即开始“软化”,强度降低。不同系的铝合金,从G.P.区到亚稳定相再到稳定相的具体析出顺序是不同的。常用工业铝合金的时效序列如下: 铝铜系合金:G.P.区~酬一『~。(C uAI。) (片状) 铭铜镁系合金:G.P.区~s),-S,~s(cuMgAI:) (针状或球状) 铭镁硅系合金:G.P.区~酬铸侧一队MgZSi) (针状) 铝锌镁系合金:G.P.区~可与可~爪MgZnZ) (球状) 一T(Mg3Zn3A12) 铝锌镁铜系合金的时效序列和铝锌镁系合金的相同。图T和图2分别是中国牌号2A12(L Y12)(铝铜镁系)和7A09(L Cg)(铝锌镁铜系)合金入工时效后的电子显微镜照片,图1示出的是片状的S‘析出相,图2 示出的是球状的丫析出相。 矍_一 图1 ZA12(IY12)铝合金经190C,12h人工时效后 的电子显微镜照片义48000 黔 图2 7Aog以Cg践吕合金经135‘C,16h人工时效后 的电子显微镜照片只48000 为了提高铝合金的强度,通常将其时效到强的峰值状态,称为峰值时效(用T6表示)。为了提高铝合金的断裂韧性(Kl。)和抗应力腐蚀性能,还可采用双级过时效处理(用T73或T74表示),此时虽然损失了一部分强度,但却提高了合金的综合性能。

9. 铝合金在时效不足的情况下进行人工时效处理是什么意思啊

这是材料在淬火后的一道工艺,可以使材料具有更高的强度。你的提问是否可以理解为用人工时效来代替自然时效,这一般看对材料有什么要求。与同一合金的自然时效状态比较,人工时效后有更高的强度和较低的塑性。

10. 为什么铝合金存在时效其他合金没有

因为铝合金里面含有铝,铝是一种跟大气容易发生反应的活性金属。