执法人员容错
⑴ 帮忙加一下容错处理
if(q>7)
{
printf("程序错误,青重新错误!!!");
p--;
}
⑵ 高铁霸座反应了怎么样的社会心理
“霸座”现象既是来侵自占别人权益的道德问题,也是扰乱公共秩序的治安问题。 其实,无论是列车上的乘务人员,还是关心事件后续的网友,维护乘车秩序的目标是相同的,保障旅客权益的诉求是一致的。但公众更期待的是,当面对劝说无果、撒泼耍赖等违规现象时,执法部门腰杆能不能更硬一点、现场处置能不能更果断一些?执法人员更渴望的是,当遭遇断章取义、污蔑指责的争议声音时,容错机制能不能更多一些、社会公众能不能再包容一点?把这些问号拉直,才能让守护规则的人不寒心,让遵守规则的人不闹心。
但反过来说,倘若通过诉诸网络暴力、披露个人隐私来惩治违规,不仅对夯实规则意识于事无补,反而落下了以子之矛攻子之盾的口实。单靠“公道自在人心”当然无法说服公众,但单纯以暴抑暴肯定也不是治理良策。让“座霸”们心服口服的最好办法,是使用规则来维护规则,带着理智来表达理智。
⑶ 怎样落实三项机制
一、要聚焦“三位一体”,完善“鼓励激励”机制。要坚持综合施策,多点发力,解决干部干事创业动力不强的问题。
1、在精神上大力鼓励。结合目标责任考核,设立“年度目标责任考核优秀奖”、“突出贡献奖”、“招商引资奖”、“扶贫攻坚先进奖”;每年在全县评选表彰15名“奋力争先”的优秀科级干部、30名“爱岗敬业”的基层一线公务员,树立先进典型,进行大力宣传。
2、在物质上重金奖励。将年度目标责任考核、县域经济社会发展监测考评、扶贫绩效考核、重点工作考核、招商引资,奖金纳入县财政预算,对获得重大项目建设一等奖的镇办(社区)和县级部门、获得重大项目建设先进个人进行重奖。
3、在政治上优先提拔。去年以来武功通过运用“三项机制”提拔重用了10名干部。今后重点对市委、市政府和县委、县政府评选出的“奋力争先”优秀科级干部、“爱岗敬业”基层一线干部优先提拔使用,对在脱贫攻坚实绩突出的第一书记、驻村干部,优先提拔重用,真正让想干事的人有机会、能干事的人有平台、干成事的人有位子。
二、要突出“四项重点”,健全“容错纠错”机制。要认真贯彻落实“三个区分开来”、“六个区分”原则,树立为担当者容、为创新者容、为实干者容的鲜明导向。
1、严把容错纠错标准。严把“十一个方面”可容错情形,厘清失误与失职、敢为与乱为、负责与懈怠、为公与为私的关系,划清“容什么、为谁容、纠什么、怎么纠”的界限,做到政策落实不空、不虚、不偏。
2、细化容错纠错措施。突出保护改革者、鼓励探索者、宽容失误者、纠正偏差者、警醒违纪者,结合武功县情和基层实践,细化在民主决策、先行先试、创造性工作、服务企业、落实政策、维稳处突、化解矛盾等方面进行容错纠错的实践标准和操作办法,确保容错纠错的操作性和公信力。
3、用好保护澄清机制。及时落实的“六项具体措施”,区别主观原因与客观条件,把不作为、乱作为与因客观条件导致的问题区分开来,支持干部敢于担当,宽容改革探索中的失误,消除干部思想顾虑,鼓励干部积极作为。
4、坚持纪律挺在前面。依纪依规,用好约谈、请示报告等日常监督管理手段,抓早抓小,及时纠错,确保干部正确履职,提高干事创业积极性。
三、要突出“三个环节”,构建“能上能下”机制。要着力解决干部干事创业外部压力不够的问题,推动形成能者上、庸者下、劣者汰的用人导向和从政环境。
1、是量化“下”的标准。明确对“目标责任考核、党的建设、扶贫攻坚、县域发展、维稳综治、安全生产、生态环境工作”七类工作中履职不力、干劲不足、进取意识不强的干部进行调整,今年先后对两名科级运用下了措施。
2、细化“下”的程序。明确用好调离岗位、改任非领导职务、引咎辞职、责令辞职等五种“下”的调整方式,进一步细化、量化干部“下”的操作程序、责任与纪律的具体措施,使政策规范明确,便于操作。
3、留出“上”的机会。对“下”的干部,要实施重点帮教,采取组织集中培训、召回跟班学习、定期谈心谈话等措施促其转变思想作风、提高履职能力,在经过一定期限考验条件成熟后,严格按照有关规定履行任免程序,重新启用。
四、要突出“三个运用”,确保“三项机制”实效。落实好“三项机制”,关键在强化运用。
1、是强化程序运用,制定《运用三项机制选拔任用干部实施细则》及相关配套制度,严格操作规程,建立科学的考核评价指标,对部门特色工作、临时重点工作的全覆盖纳入,确保考核奖评工作与干部工作无缝衔接,使三项机制精准落地。
2、是强化导向运用。着力放大“三项机制”的导向作用,创新以考促学、提问式授课、智慧党建平台互动等形式,分层抓好“三项机制”的学习培训,把党员干部学习情况和工作表现纳入积分制管理,在干部选拔任用、评先选优、表彰奖励各环节彰显“三项机制”运用,着力形成能者上、错者容、庸者下的导向。
3、是强化追责运用。落实“三项机制”的考核运用,坚持下抓两级,夯实主体责任,强化督查指导,从严问效追责,扎实推动以“三项机制”为核心的干部制度改革取得实实在在成效。
(3)执法人员容错扩展阅读
党员干部存在的问题:
1、不作为问题。少数领导干部有等靠思想,对中央和省、市、县委决策部署缺乏深入思考,思想懒惰,行动迟缓,办事拖拉。
一些中层干部工作只求过得去、不求过得硬,按部就班、平推平庸。有的干部有功利思想,对需要协作完成的工作,不愿主动参与、牵头。有的干部大局观念不强,对职责边界上的事推诿扯皮,对统一安排任务能躲就躲,致使一项措施出台后,仅督查落实就花了大量人力、精力。
2、慢作为问题。一些干部执行力不强、缺乏激情、办事效率低下、工作不扎实,在一些具体事务处理上没能做到急事急办、特事特办;个别部门中层干部,官本位思想较重,对群众要求解决的事项表面应付,重书面答复,轻实际处理。
少数干部宗旨意识不牢、服务观念不强,执行任务不坚决,见困难的工作就推,攻坚克难意识有待强化。
3、怕作为问题。一些干部面对改革发展和脱贫攻坚任务,没有先例的事不敢干,不敢啃“硬骨头”,缺乏攻坚克难的勇气、敢闯敢试的锐气、争创一流的志气。
少数执法监管部门干部对法律法规和责任清单规定的监管事项不主动履行职责,怕执法办案出错追责;一些镇办干部面对信访维稳问题,担心说错话、落实不到位出现新矛盾,回避矛盾,听之任之。
参考资料来源:人民网-精准落实三项机制 激发干事创业活力
⑷ 怎样确保容错纠错机制健康运行
容错纠错机制是实现从严治党的有效制度保障,是创新者实干家的兜底利器。用好容错纠错机制,必须准确把握政策界限,确保容错纠错机制健康运行。
容错纠错还必须与考核评价、奖优罚劣结合起来。要合理设置干部考核指标,改进考核方式方法,增强考核的科学性、针对性、可操作性,调动和保护好各区域、各战线、各层级干部的积极性,切实解决干与不干、干多干少、干好干坏一个样的问题。完善政绩考核,强化考核结果分析运用,将其作为干部选拔任用、评先奖优、问责追责的重要依据,使政治坚定、奋发有为的干部得到褒奖和鼓励,使慢作为、不作为、乱作为的干部受到警醒和惩戒。加强考核结果反馈,引导干部牢固树立正确政绩观,防止不切实际定目标,切实解决表态多调门高、行动少落实差等突出问题,铲除滋生形式主义、官僚主义的土壤。
容错纠错机制不是一个框,不要什么都往里面装。容错不等于无限度宽容,更不等于可以胡来。在实施容错减责的同时,反对消极腐败,防止激励变纵容、保护变庇护,严禁打着改革创新旗号搞劳民伤财的“政绩工程”“形象工程”。坚决惩治借改革创新之名徇私舞弊、贪污受贿、假公济私以及严重侵害群众利益等行为,让党员干部特别是领导干部少犯错、不犯错。
来源:新华网
⑸ 哪个架构模式支持"容错
容错软件的定义:
1。对自身的错误的作用具有屏蔽作用
2。可以从错误状态恢复到正常状态
3。发生错误时,能完成预期的功能
4。在一定程度上具有容错能力
实现容错技术主要是冗余:
1。结构冗余
2。信息冗余
3。时间冗余
4。冗余附加技术
世纪80年代,第一代容错技术就开始进入商用领域。美国Stratus(容错公司)在Stratus独特的硬件级容错技术及VOS专有操作系统环境下,采用了Motorola M68000处理器。
1993年,Intel I860处理器在Stratus的硬件级容错体系结构中成功应用,在软件环境方面,还能满足业界对开放性要求的Unix操作系统FTX,即AT&T UNIX SVR4。
1996年,容错技术得到HP的支持,共同推出Stratus Continuum系列,将Stratus容错结构结合HP PA-RISC对称多处理技术。
进入21世纪以来,制造、中小企业、能源、交通等领域对服务器,特别是中低端IA服务器的需求激增,过去仅仅可以应用在RISC平台、HP-UX环境下的容错产品也面临着新的挑战。另一方面,企业越来越依赖信息系统来完成关键业务的应用,同时他们不可能配备更多的专业人员来进行专职维护。双机热备、集群服务器遇到难题。
如今:NEC通过与美国容错公司多年的合作,于2001年推出了业界第一台基于IA架构、支持Microsoft Win-dows Server 2000标准操作系统环境的容错服务器。NEC的Express5800/ft系列在Windows及Linux平台上的可靠性达到了99.999%,这种实时保护技术来源于STRATUS连续处理技术(Fundamentals of Continuous Pro-cessing Design),它包括:
1、LOCKSTEP 技术
LOCKSTEP技术使用相同的、冗余的硬件组件在同一时间内处理相同的指令。LOCKSTEP技术可以保持多个CPU、内存精确的同步,在正确的相同时钟周期内执行相同的指令。该技术保证能够发现任何错误,即使短暂的错误,系统也能在不间断处理和不损失数据的情况下恢复正常运行。
2、安全故障(FAILSAFE)软件
FAILSAFE 软件和LOCKSTEP技术运行一样,可防止很多软件错误和储运耗损。该软件在Windows 2000/2003环境下采用热插拔、内存镜像、负载均衡、多点终止失效、多通道I/O等方式,大大增强了系统连续运行的稳定性。
FAILSAFE可以管理和诊断特征捕获,分析和通报服务器的软件问题,从而允许个人在软件发生错误之前去纠正错误。FAILSAFE软件的下列功能增强了NEC Express5800/ft系统在Windows环境中的可靠性:保护短暂的硬件故障;通过增强的驱动程序预防软件失效;软件问题的捕获、分析及修正;内存数据的连续性维持;丰富的纠错功能可以解决各种不同的错误。为了避免物理撞击等意外故障,安全故障软件还提供了自动重启功能,能够将宕机前CPU与内存数据即时保存下来,最大限度地避免数据的意外丢失。
3、激活服务(ACTIVE SERVICE )
当然,假如容错服务器的硬件发生永久性故障,尽管系统能够正常运行,也必须及时更换硬件才能维持容错的冗余架构。容错服务器都配备了简易直观的图形界面来管理监测工具,(如NECExpress5800/ft提供了ESMPRO 管理软件),能够对服务器中硬件运行及故障状态进行适时监控。
未来
容错技术的应用已经开始从过去的证券、电信等领域进入基础行业,如制造、能源、物流、交通及有着"7×24"不间断运营需求的中小商业团体和政府。NEC为迎合互联网的高速增长,为容错服务器引入了最新的稳定、安全、可升级、功能强大的Linux版本。
容错的未来将会向更高的可用性、更卓越的可维护性发展。调查显示,越来越多的用户开始注重TCO(总拥有成本)而不是初期购买价格,更多的企业决定逐步放弃采用双机热备的方式来维护复杂的集群服务器,转而将目光瞄向具有容错技术的平台或容错服务器平台。
在中国市场,NEC 公司与神州数码的合作在一定程度上弥补了容错服务器在中国市场服务拓展领域的短板。这将引发国内各领域的容错技术与应用的井喷式发展。
⑹ 多个机器可以更好的容错
磁盘阵列简称RAID(Rendant Arrays of InexpensivepDisks),有“价格便宜且多余的磁盘阵列”之意。其原理是利用数组方式来作磁盘组,配合数据分散排列的设计,提升数据的安全性。磁盘阵列主要针对硬盘,在容量及速度上,无法跟上CPU及内存的发展,提出改善方法。磁盘阵列是由很多便宜、容量较小、稳定性较高、速度较慢磁盘,组合成一个大型的磁盘组,利用个别磁盘提供数据所产生的加成效果来提升整个磁盘系统的效能。同时,在储存数据时,利用这项技术,将数据切割成许多区段,分别存放在各个硬盘上。 磁盘阵列还能利用同位检查(Parity Check)的观念,在数组中任一颗硬盘故障时,仍可读出数据,在数据重构时,将故障硬盘内的数据,经计算后重新置入新硬盘中。 磁盘阵列的由来: 由美国柏克莱大学(University of California-Berkeley)在1987年,发表的文章:“A Case for Rendant Arrays of Inexpensive Disks”。文章中,谈到了RAID这个字汇,而且定义了RAID的5层级。柏克莱大学研究其研究目的为,反应当时CPU快速的性能。CPU效能每年大约成长30~50%,而硬磁机只能成长约7%。研究小组希望能找出一种新的技术,在短期内,立即提升效能来平衡计算机的运算能力。在当时,柏克莱研究小组的主要研究目的是效能与成本。 另外,研究小组也设计出容错(fault-tolerance),逻辑数据备份(logical data rendancy),而产生了RAID理论。研究初期,便宜(Inexpensive)的磁盘也是主要的重点,但后来发现,大量便宜磁盘组合并不能适用于现实的生产环境,后来Inexpensive被改为independence,许多独立的磁盘组。 磁盘阵列,时势所趋: 自有PC以来,硬盘是最常使用的储存装置。但在整个计算机系统架构中,跟CPU与RAM来比,硬盘的速度是PC中最弱的设备之一。所以,为了加速计算机整体的数据流量,增加储存的吞吐量,进阶改进硬盘数据的安全,磁盘阵列的设计因应而生。 硬盘随着科技的日新月异,现在其容量已达800GB以上,转速到了1万转,甚至15000转,而且价格实在是很便宜,再加现在企业流行,人力资源规画(Enterprise Resource Planning:ERP)是每个公司建构网络的主要目标。所以,利用局域网络来传递数据,服务器所使用的硬盘显得非常重要,除了容量大、速度快之外,稳定更是基本要求。基于此因,磁盘阵列开始被广泛的应用在个人计算机上。 磁盘阵列其样式有三种,一是外接式磁盘阵列柜、二是内接式磁盘阵列卡,三是利用软件来仿真。外接式磁盘阵列柜最常被使用大型服务器上,具可热抽换(Hot Swap)的特性,不过这类产品的价格都很贵。内接式磁盘阵列卡,因为价格便宜,但需要较高的安装技术,适合技术人员使用操作。另外利用软件仿真的方式,由于会拖累机器的速度,不适合大数据流量的服务器。 由上述可知,现在IDE磁盘阵列大行其道的道理;IDE接口硬盘的稳定度与效能表现已有很大的提升,加上成本考量,所以采用IDE接口硬盘来作为磁盘阵列的决解方案,可说是最佳的方式 在网络存储中,磁盘阵列是一种把若干硬磁盘驱动器按照一定要求组成一个整体,整个磁盘阵列由阵列控制器管理的系统。磁带库是像自动加载磁带机一样的基于磁带的备份系统,磁带库由多个驱动器、多个槽、机械手臂组成,并可由机械手臂自动实现磁带的拆卸和装填。 它能够提供同样的基本自动备份和数据恢复功能,同时具有更先进的技术特点。掌握网络存储设备的安装、操作使用也是网管员必须要学会的。 在架构无线局域网时,对无线路由器、无线网络桥接器AP、无线网卡、天线等无线局域网产品进行安装、调试和应用操作。 磁盘阵列的主流结构: 磁盘阵列作为独立系统在主机外直连或通过网络与主机相连。磁盘阵列有多个端口可以被不同主机或不同端口连接。一个主机连接阵列的不同端口可提升传输速度。 和目前PC用单磁盘内部集成缓存一样,在磁盘阵列内部为加快与主机交互速度,都带有一定量的缓冲存储器。主机与磁盘阵列的缓存交互,缓存与具体的磁盘交互数据。 在应用中,有部分常用的数据是需要经常读取的,磁盘阵列根据内部的算法,查找出这些经常读取的数据,存储在缓存中,加快主机读取这些数据的速度,而对于其他缓存中没有的数据,主机要读取,则由阵列从磁盘上直接读取传输给主机。对于主机写入的数据,只写在缓存中,主机可以立即完成写操作。然后由缓存再慢慢写入磁盘。 [编辑本段]磁盘阵列问答 1. 什么是磁盘阵列(Disk Array)? 磁盘阵列(Disk Array)是由一个硬盘控制器来控制多个硬盘的相互连接,使多个硬盘的读写同步,减少错误,增加效率和可靠度的技术。 2.什么是RAID? RAID是Rendant Array of Inexpensive Disk的缩写,意为廉价冗余磁盘阵列,是磁盘阵列在技术上实现的理论标准,其目的在于减少错误、提高存储系统的性能与可靠度。常用的等级有1、3、5级等。 3.什么是RAID Level 0? RAID Level 0是Data Striping(数据分割)技术的实现,它将所有硬盘构成一个磁盘阵列,可以同时对多个硬盘做读写动作,但是不具备备份及容错能力,它价格便宜,硬盘使用效率最佳,但是可靠度是最差的。 以一个由两个硬盘组成的RAID Level 0磁盘阵列为例,它把数据的第1和2位写入第一个硬盘,第三和第四位写入第二个硬盘……以此类推,所以叫“数据分割",因为各盘数据的写入动作是同时做的,所以它的存储速度可以比单个硬盘快几倍。 但是,这样一来,万一磁盘阵列上有一个硬盘坏了,由于它把数据拆开分别存到了不同的硬盘上,坏了一颗等于中断了数据的完整性,如果没有整个磁盘阵列的备份磁带的话,所有的数据是无法挽回的。因此,尽管它的效率很高,但是很少有人冒着数据丢失的危险采用这项技术。 4.什么是RAID Level 1? RAID Level 1使用的是Disk Mirror(磁盘映射)技术,就是把一个硬盘的内容同步备份复制到另一个硬盘里,所以具备了备份和容错能力,这样做的使用效率不高,但是可靠性高。 5.什么是RAID Level 3? RAID Level 3采用Byte-interleaving(数据交错存储)技术,硬盘在SCSI控制卡下同时动作,并将用于奇偶校验的数据储存到特定硬盘机中,它具备了容错能力,硬盘的使用效率是安装几个就减掉一个,它的可靠度较佳。 6.什么是RAID Level 5? RAID Level 5使用的是Disk Striping(硬盘分割)技术,与Level 3的不同之处在于它把奇偶校验数据存放到各个硬盘里,各个硬盘在SCSI控制卡的控制下平行动作,有容错能力,跟Level 3一样,它的使用效率也是安装几个再减掉一个。 7.什么是热插拔硬盘? 热插拔硬盘英文名为Hot-Swappable Disk,在磁盘阵列中,如果使用支持热插拔技术的硬盘,在有一个硬盘坏掉的情况下,服务器可以不用关机,直接抽出坏掉的硬盘,换上新的硬盘。一般的商用磁盘阵列在硬盘坏掉的时候,会自动鸣叫提示管理员更换硬盘。 [编辑本段]RAID磁盘阵列技术简述 在计算机发展的初期,“大容量”硬盘的价格还相当高,解决数据存储安全性问题的主要方法是使用磁带机等设备进行备份,这种方法虽然可以保证数据的安全,但查阅和备份工作都相当繁琐。1987年, Patterson、Gibson和Katz这三位工程师在加州大学伯克利分校发表了题为《A Case of Rendant Array of Inexpensive Disks(廉价磁盘冗余阵列方案)》的论文,其基本思想就是将多只容量较小的、相对廉价的硬盘驱动器进行有机组合,使其性能超过一只昂贵的大硬盘。这一设计思想很快被接受,从此RAID技术得到了广泛应用,数据存储进入了更快速、更安全、更廉价的新时代。 磁盘阵列对于个人电脑用户,还是比较陌生和神秘的。印象中的磁盘阵列似乎还停留在这样的场景中:在宽阔的大厅里,林立的磁盘柜,数名表情阴郁、早早谢顶的工程师徘徊在其中,不断从中抽出一块块沉重的硬盘,再插入一块块似乎更加沉重的硬盘……终于,随着大容量硬盘的价格不断降低,个人电脑的性能不断提升,IDE-RAID作为磁盘性能改善的最廉价解决方案,开始走入一般用户的计算机系统。 一、RAID技术规范简介 RAID技术主要包含RAID 0~RAID 7等数个规范,它们的侧重点各不相同,常见的规范有如下几种: RAID 0:RAID 0连续以位或字节为单位分割数据,并行读/写于多个磁盘上,因此具有很高的数据传输率,但它没有数据冗余,因此并不能算是真正的RAID结构。RAID 0只是单纯地提高性能,并没有为数据的可靠性提供保证,而且其中的一个磁盘失效将影响到所有数据。因此,RAID 0不能应用于数据安全性要求高的场合。 RAID 1:它是通过磁盘数据镜像实现数据冗余,在成对的独立磁盘上产生互 为备份的数据。当原始数据繁忙时,可直接从镜像拷贝中读取数据,因此RAID 1可以提高读取性能。RAID 1是磁盘阵列中单位成本最高的,但提供了很高的数据安全性和可用性。当一个磁盘失效时,系统可以自动切换到镜像磁盘上读写,而不需要重组失效的数据。 RAID 0+1: 也被称为RAID 10标准,实际是将RAID 0和RAID 1标准结合的产物,在连续地以位或字节为单位分割数据并且并行读/写多个磁盘的同时,为每一块磁盘作磁盘镜像进行冗余。它的优点是同时拥有RAID 0的超凡速度和RAID 1的数据高可靠性,但是CPU占用率同样也更高,而且磁盘的利用率比较低。 RAID 2:将数据条块化地分布于不同的硬盘上,条块单位为位或字节,并使用称为“加重平均纠错码(海明码)”的编码技术来提供错误检查及恢复。这种编码技术需要多个磁盘存放检查及恢复信息,使得RAID 2技术实施更复杂,因此在商业环境中很少使用。 RAID 3:它同RAID 2非常类似,都是将数据条块化分布于不同的硬盘上,区别在于RAID 3使用简单的奇偶校验,并用单块磁盘存放奇偶校验信息。如果一块磁盘失效,奇偶盘及其他数据盘可以重新产生数据;如果奇偶盘失效则不影响数据使用。RAID 3对于大量的连续数据可提供很好的传输率,但对于随机数据来说,奇偶盘会成为写操作的瓶颈。 RAID 4:RAID 4同样也将数据条块化并分布于不同的磁盘上,但条块单位为块或记录。RAID 4使用一块磁盘作为奇偶校验盘,每次写操作都需要访问奇偶盘,这时奇偶校验盘会成为写操作的瓶颈,因此RAID 4在商业环境中也很少使用。 RAID 5:RAID 5不单独指定的奇偶盘,而是在所有磁盘上交叉地存取数据及奇偶校验信息。在RAID 5上,读/写指针可同时对阵列设备进行操作,提供了更高的数据流量。RAID 5更适合于小数据块和随机读写的数据。RAID 3与RAID 5相比,最主要的区别在于RAID 3每进行一次数据传输就需涉及到所有的阵列盘;而对于RAID 5来说,大部分数据传输只对一块磁盘操作,并可进行并行操作。在RAID 5中有“写损失”,即每一次写操作将产生四个实际的读/写操作,其中两次读旧的数据及奇偶信息,两次写新的数据及奇偶信息。 RAID 6:与RAID 5相比,RAID 6增加了第二个独立的奇偶校验信息块。两个独立的奇偶系统使用不同的算法,数据的可靠性非常高,即使两块磁盘同时失效也不会影响数据的使用。但RAID 6需要分配给奇偶校验信息更大的磁盘空间,相对于RAID 5有更大的“写损失”,因此“写性能”非常差。较差的性能和复杂的实施方式使得RAID 6很少得到实际应用。 RAID 7:这是一种新的RAID标准,其自身带有智能化实时操作系统和用于存储管理的软件工具,可完全独立于主机运行,不占用主机CPU资源。RAID 7可以看作是一种存储计算机(Storage Computer),它与其他RAID标准有明显区别。除了以上的各种标准(如表1),我们可以如RAID 0+1那样结合多种RAID规范来构筑所需的RAID阵列,例如RAID 5+3(RAID 53)就是一种应用较为广泛的阵列形式。用户一般可以通过灵活配置磁盘阵列来获得更加符合其要求的磁盘存储系统。 开始时RAID方案主要针对SCSI硬盘系统,系统成本比较昂贵。1993年,HighPoint公司推出了第一款IDE-RAID控制芯片,能够利用相对廉价的IDE硬盘来组建RAID系统,从而大大降低了RAID的“门槛”。从此,个人用户也开始关注这项技术,因为硬盘是现代个人计算机中发展最为“缓慢”和最缺少安全性的设备,而用户存储在其中的数据却常常远超计算机的本身价格。在花费相对较少的情况下,RAID技术可以使个人用户也享受到成倍的磁盘速度提升和更高的数据安全性,现在个人电脑市场上的IDE-RAID控制芯片主要出自HighPoint和Promise公司,此外还有一部分来自AMI公司(如表2)。 面向个人用户的IDE-RAID芯片一般只提供了RAID 0、RAID 1和RAID 0+1(RAID 10)等RAID规范的支持,虽然它们在技术上无法与商用系统相提并论,但是对普通用户来说其提供的速度提升和安全保证已经足够了。随着硬盘接口传输率的不断提高,IDE-RAID芯片也不断地更新换代,芯片市场上的主流芯片已经全部支持ATA 100标准,而HighPoint公司新推出的HPT 372芯片和Promise最新的PDC20276芯片,甚至已经可以支持ATA 133标准的IDE硬盘。在主板厂商竞争加剧、个人电脑用户要求逐渐提高的今天,在主板上板载RAID芯片的厂商已经不在少数,用户完全可以不用购置RAID卡,直接组建自己的磁盘阵列,感受磁盘狂飙的速度。 二.通过硬件控制芯片实现IDE RAID的方法 在RAID家族里,RAID 0和RAID 1在个人电脑上应用最广泛,毕竟愿意使用4块甚至更多的硬盘来构筑RAID 0+1或其他硬盘阵列的个人用户少之又少,因此我们在这里仅就这两种RAID方式进行讲解。我们选择支持IDE-RAID功能的升技KT7A-R AID主板,一步一步向大家介绍IDE-RAID的安装。升技KT7A-RAID集成的是HighPoint 370芯片,支持RAID 0、1、0+1。 做RAID自然少不了硬盘,RAID 0和RAID 1对磁盘的要求不一样,RAID 1(Mirror)磁盘镜像一般要求两块(或多块)硬盘容量一致,而RAID 0(Striping)磁盘一般没有这个要求,当然,选用容量相似性能相近甚至完全一样的硬盘比较理想。为了方便测试,我们选用两块60GB的希捷酷鱼Ⅳ硬盘(Barracuda ATA Ⅳ、编号ST360021A)。系统选用Duron 750MHz的CPU,2×128MB樵风金条SDRAM,耕升GeForce2 Pro显卡,应该说是比较普通的配置,我们也希望借此了解构建RAID所需的系统要求。1.RAID 0的创建 第一步 首先要备份好硬盘中的数据。很多用户都没有重视备份这一工作,特别是一些比较粗心的个人用户。创建RAID对数据而言是一项比较危险的操作,稍不留神就有可能毁掉整块硬盘的数据,我们首先介绍的RAID 0更是这种情况,在创建RAID 0时,所有阵列中磁盘上的数据都将被抹去,包括硬盘分区表在内。因此要先准备好一张带Fdisk与format命令的Windows 98启动盘,这也是这一步要注意的重要事项。 第二步 将两块硬盘的跳线设置为Master,分别接上升技KT7A-RAID的IDE3、IDE4口(它们由主板上的HighPoint370芯片控制)。由于RAID 0会重建两块硬盘的分区表,我们就无需考虑硬盘连接的顺序(下文中我们会看到在创建RAID 1时这个顺序很重要)。 第三步 对BIOS进行设置,打开ATA RAID CONTROLLER。我们在升技KT7A-RAID主板的BIOS中进入INTEGRATED PERIPHERALS选项并开启ATA100 RAID IDE CONTROLLER。升技建议将开机顺序全部改为ATA 100 RAID,实际我们发现这在系统安装过程中并不可行,难道没有分区的硬盘可以启动吗?因此我们仍然设置软驱作为首选项。 第四步 接下来的设置步骤是创建RAID 0的核心内容,我们以图解方式向大家详细介绍: 1.系统BIOS设置完成以后重启电脑,开机检测时将不会再报告发现硬盘。 2.磁盘的管理将由HighPoint 370芯片接管。 3.下面是非常关键的HighPoint 370 BIOS设置,在HighPoint 370磁盘扫描界面同时按下“Ctrl”和“H”。 4.进入HighPoint 370 BIOS设置界面后第一个要做的工作就是选择“Create RAID”创建RAID。 5.在“Array Mode(阵列模式)”中进行RAID模式选择,这里能够看到RAID 0、RAID 1、RAID 0+1和Span的选项,在此我们选择了RAID 0项。 6.RAID模式选择完成会自动退出到上一级菜单进行“Disk Drives(磁盘驱动器)”选择,一般来说直接回车就行了。 7.下一项设置是条带单位大小,缺省值为64kB,没有特殊要求可以不予理睬。8.接着是“Start Create(开始创建)”的选项,在你按下“Y”之前,请认真想想是否还有重要的数据留在硬盘上,这是你最后的机会!一旦开始创建RAID,硬盘上的所有数据都会被清除。 9.创建完成以后是指定BOOT启动盘,任选一个吧。 按“Esc”键退出,当然少不了按下“Y”来确认一下。 HighPoint 370 BIOS没有提供类似“Exit Without Save”的功能,修改设置后是不可逆转的 磁盘阵列优点: 磁盘阵列有许多优点:首先,提高了存储容量;其次,多台磁盘驱动器可并行工作,提高了数据传输率;...RAID技术确实提供了比通常的磁盘存储更高的性能指标、数据完整性和数据可用性,尤其是在当今面临的I/O总是滞后于CPU性能的瓶颈问题越来越突出的情况下,RAID解决方案能够有效地弥补这个缺口。 [编辑本段]如何组建RAID 作为存储设备中的一员,硬盘起着极其重要的作用,我们的大多数数据都是通过硬盘来存储。今天我们将深入了解硬盘的内部世界,并掌握双硬盘以及RAID磁盘列阵的安装方法。 解读硬盘 尽管在外部结构方面,各种硬盘之间有着一定的区别,但是其内部结构还是大同小异的,毕竟硬盘的本质工作方式不会改变。打开硬盘外壳之后,我们也就能够看到神秘的内部世界,其核心部分包括盘体、主轴电机、读写磁头、寻道电机等主要部件。不过需要提醒大家的是,千万不要随意打开硬盘的外壳,这将100%使整个硬盘报废,因为硬盘的内部盘面不能沾染上一粒灰尘,否则必定报废。一般硬盘内部结构维修需要在要求极为严格的无尘实验室中进行。 1.盘体 盘体从物理上分为盘片、磁面(Side)、磁道(Track)、柱面(Cylinder)与扇区(Sector)等4个部分。磁面也就是组成盘体各盘片的上下两个盘面,第一个盘片的第一面为0磁面,下一个为1磁面;第二个盘片的第一面为2磁面,依此类推……。磁道也就是在格式化磁盘时盘片上被划分出来的许多同心圆。最外层的磁道为0道,号数向着磁面中心递增。事实上,硬盘的盘体结构与大家熟悉的软盘非常类似。只不过其盘片是由多个重叠在一起并由垫圈隔开的盘片组成,而且盘片采用金属圆片(IBM曾经采用玻璃作为材料),表面极为平整光滑,并涂有磁性物质。 2.读写磁头组件 读写磁头组件由读写磁头、传动臂、传动轴三部分组成。在工作时,磁头通过传动臂和传动轴以指定半径扫描盘片,以此来读写数据。磁头是集成工艺制成的多个磁头的组合,采用非接触式结构。硬盘加电后,读写磁头在高速旋转的磁盘表面相对飞行,磁头距离磁盘表面的间隙只有0.1~0.3μm。新型MR(Magnetoresistive heads)磁阻磁头采用读写分离的磁头结构,写操作时使用传统的磁感应磁头,读操作则采用MR磁头。 3.磁头驱动机构 对于硬盘而言,磁头驱动机构就好比是一个指挥官,它控制磁头的读写,直接向传动臂与传动轴传送指令。磁头驱动机构主要由音圈电机、磁头驱动小车和防震动机构组成。磁头驱动机构对磁头进行正确的驱动,在很短的时间内精确定位到系统指令指定的磁道上,保证数据读写的可靠性。一般而言,磁头机构的电机有步进电机、力矩电机和音圈电机三种,现在硬盘多采用音圈电机驱动。音圈是中间插有与磁头相连的磁棒的线圈,当电流通过线圈时,磁棒就会发生位移,进而驱动装载磁头的小车,并根据控制器在盘面上磁头位置的信息编码来得到磁头移动的距离,达到准确定位的目的。 4.主轴组件 硬盘的主轴组件主要是轴承和马达,我们可以笼统地认为轴承决定一款硬盘的噪音表现,而马达决定性能。当然,这样说并不完全,但是基本上表达了这两个部件在硬盘中的重要地位。从滚珠轴承到油浸轴承再到液态轴承,硬盘轴承处于不断的改良当中,目前液态轴承已经成为绝对的主流产品,金属之间不直接摩擦,这样一来除了延长主轴电机的寿命、减少发热之外,最重要一点是实现了硬盘噪声控制的突破。不过需要指出的是,采用液态轴承对于性能并没有任何好处,甚至反而会延长寻道时间。对于PC设备而言,似乎噪音与性能是一对永远难以平衡的矛盾。 双硬盘的安装 随着宽带网以及多媒体技术的普及,我们对于硬盘的容量需求越来越大。在各种大型软件、视频动画、3D游戏的诱惑下,很多用户都在考虑添加一块硬盘。事实上,安装双硬盘并不是一件麻烦的事情,即便你没有任何经验,也可以在我们的帮助下轻松搞定。 目前的主流主板至少提供了一个IDE接口,而每个IDE接口能够安装两块IDE硬盘。在安装双硬盘之前我们首先要做的就是对硬盘的跳线进行设定,因为此时必须设定主从模式。一般而言,硬盘的主从跳线的位置在硬盘末端数据线接口和电源线接口的中间,由3~4组插针和1~2个跳线帽组成的。硬盘跳线的设定模式一般有三种,主(MASTER)、从(SLAVE)和自动选择(CABLE SELECT),建议大家都全设置为CABLE SELECT。 解决盘符交错问题 安装双硬盘就不能不说盘符交错问题。什么是“盘符交错”呢?举个例子吧。假设你的第一硬盘原来有C、D、E三个分区,分别标记为C1、D1、E1,第二硬盘有C、D两个分区,分别标记为C2、D2。一般情况下,安装双硬盘后,硬盘分区的顺序将为C-C1,D-C2,E-D1,F-E1,G-D2。原来第一硬盘的D、E分区变成了E、F盘,在C、E盘之间嵌入了第二硬盘的C分区,这就是“盘符交错”。“盘符交错”会引起安装双硬盘以前原有的软件因路径错误而无法正常工作。 此时我们可以采取以下两个措施来避免“盘符交错”: 方案一: 如果两块硬盘上都有主引导分区,可在BIOS中只设置第一硬盘,而将第二硬盘设为None,这样在Windows或Linux系统中就会按IDE接口的先后顺序依次分配盘符,从而避免“盘符交错”,而且也不会破坏硬盘数据。这样做还有另外的好处,如果在两块硬盘的主引导分区分别装有不同的操作系统,可以通过改变CMOS设置激活其中的一个硬盘,屏蔽另一个硬盘,从而启动不同的操作系统。缺点是在纯DOS系统下无法看到被BIOS屏蔽的硬盘。不过现在NTFS分区时代已经与DOS彻底决裂,因此这一缺陷几乎可以被忽略。 方案二: 只在第一硬盘上建立主分区(当然还可以有其它逻辑分区),而将第二硬盘全部划分为扩展分区,然后再在扩展分区中划分逻辑分区,就可以彻底避免“盘符交错”了。当然,对第二硬盘分区前,要备份好你的数据。Windows 2000/XP/2003操作系统自带了磁盘管理器,点击“开始”→“设置”→“控制面板”→“管理工具”→“计算机管理”,切换到“磁盘管理”,此时就可以对每个分区分配盘符。由于第二块硬盘已经不全在主分区,此时调配时没有任何限制。 实战RAID 0 硬盘的速度直接影响到整个系统的效率,有时甚至比CPU和内存更为显着。为此,将双硬盘并行工作的RAID 0磁盘列阵开始流行起来,RAID 0磁盘列阵在读写数据时,系统将向两块硬盘同时操作,这项技术能够在不损失硬盘总容量的前提下大幅度提高磁盘性能。 在此次IDE硬盘的RAID 0实战中,我们采用Tekram DC200芯片为例向大家介绍。尽管它与常见的Promise和HighPiont芯片不同,但是使用方法还是基本一致,而SATA RAID的使用方法也几乎完全一样。其实使用RAID 0的关键是掌握RAID控制卡BIOS的设置,当我们把RAID控制卡安装好并接上两个硬盘时,系统开机就会出现如下的画面。 在MENU菜单中选择“1. SET RAID CONFIGURATION”,按回车键,此时我们就可以进入“SET RAID CONFIGURATION”界面。RAID控制卡将使用一段时间来识别硬盘,稍候我们把光标移动到硬盘,再按空格键来进行选择,按回车键确认选择,这时将弹出一个新的窗口显示可供选择的RAID的模式。共有4 种模式:JBOD(不适用RAID)、RAID 0、RAID 1、RAID 0+1。 毫无疑问,我们当然是选择“RAID 0”。然后大家可以通过STATUS(状态)菜单查看此模式是否被真正激活。至此,我们的RAID 0硬件安装就结束了,大家可以接着分区并安装操作系统操作了。值得注意的是,由于Windows并不能识别RAID控制芯片,因此它把RAID控制器识别为普通的SCSI控制卡。强烈建达大家在安装完Windows之后为RAID控制器装上正确的驱动程序,这不仅能够提高RAID系统的稳定性,还可以大幅度提高性能。此外,不少RAID控制卡还带有功能丰富的软件,可以帮助用户在Windows下查看RAID工作状态