『壹』 什么是339芯片

339 芯片方案,是专门针对目前全球安防监控市场研发设计的一款独到专业级方案,伴随着全球安防的持续发展,前端高清数字技术对于安防监控系统起着至关重要的作用,产品除了需要在
能达成高品质的成像效果的同时,还需要一定的经济性,能够满足全球安防行业普及的需求。
公司研发人员长期致力于卫星影像科技,安防成像系统,医疗高清成像系统等尖端成像技术的革新,该实验室推出的独特的APS(Active Pixel Sensor,主动像素传感器)CMOS元件,具有分
辨率高、噪声低、暗电流小以及感光范围大等诸多优点,这种传感器拥有的一项专利技术能够为CMOS-APS提供较高的填充因子数。与感光面积局限在二极管面积内的传统APS像素,Sarnoff方
法能够将标准CMOS加工芯片的大部分面积转变为感光面积,高达80%的填充因子是产品具备高感光度的有力保证。该芯片方案面世以来被大多数国家的安防公司广泛使用。
339芯片产品
深圳孝加宝监控,对该芯片方案投入了主要的研发力量,针对国内市场客户对方案经行优化,突出摄像机的色彩还原度,清晰度,以及照度。
测试出来的效果在各项指标经对比都超越了目前高端SONY EFFIO /SONY Effio-e4140+673方案,被越来越多的工程商,以及终端客户所认同。
339芯片提供了MasterI2C接口和模拟差分电视信号接口[2]。
MasterI2C接口使客户将调试最佳图像效果参数存于I2C接口EEROM中,等CIS上电则读取EEROM中的参数并自行配置到最佳效果。
针对越来越多的客户采用非屏蔽双绞线传输模拟视频信号,孝加宝CIS提供了差分输出接口,无须外接Balun.而且S20不仅能够输出RGB,YUV,CCIR656等数字信号,而且可以输出PAL/NTSC制式
的模拟电视信号,既满足传统的CCTV应用,也能满足诸如IPCamera等数字应用。此外CIS还提供I2C控制接口,便于外部MCU对CIS的控制。
339+人脸识别
具体使用后发现,339芯片整体上还是相当不错的。不仅在色彩、低照、信噪比和热稳定性方面都比较领先,就是在分辨率、封装外形等方面也跟国外的同类产品相当。
整体性能跟OV7949\OV7950\韩国PC1030以及美光136.中星微702组合都有得一比。
而且在强光背景下也能抓拍到图片,这也是国内的其他ccd方案是不可能比拟的。
339芯片方案
而且该单芯片已经整合了移动侦测功能(OV7949\OV7950\韩国PC1030都不具有该功能),相对于具有同样功能的产品美光360+中星微702组合,电路更加简洁,节省了成本,也降低了故障率,
更轻易实现板块小型化。
339芯片高清晰 性价比高,而且功耗较小,功耗能做到65毫安左右。
339\700线,白光灯方案 监控摄像机,保证日夜转换。有更好的夜视效果。

『贰』 天津大学cmos图像传感器芯片怎么样

CMOS传感器采用一般半导体电路最常用的CMOS工艺,具有集成度高、功耗小、速度快、成本低等特点,最近几年在宽动态、低照度方面发展迅速。
CMOS即互补性金属氧化物半导体,主要是利用硅和锗两种元素所做成的半导体,通过CMOS上带负电和带正电的晶体管来实现基本的功能。
这两个互补效应所产生的电流即可被处理芯片记录和解读成影像。
在模拟摄像机以及标清网络摄像机中,CCD的使用最为广泛,长期以来都在市场上占有主导地位。
CCD的特点是灵敏度高,但响应速度较低,不适用于高清监控摄像机采用的高分辨率逐行扫描方式,因此进入高清监控时代以后,CMOS逐渐被人们所认识,高清监控摄像机普遍采用CMOS感光器件。
CMOS针对CCD最主要的优势就是非常省电。
不像由二级管组成的CCD,CMOS电路几乎没有静态电量消耗。
这就使得CMOS的耗电量只有普通CCD的1/3左右,CMOS重要问题是在处理快速变换的影像时,由于电流变换过于频繁而过热,暗电流抑制的好就问题不大,如果抑制的不好就十分容易出现噪点。
已经研发出720P与1080P专用的背照式CMOS器件,其灵敏度性能已经与CCD接近。
与表面照射型CMOS传感器相比,背照式CMOS在灵敏度(S/N)上具有很大优势,显著提高低光照条件下的拍摄效果,因此在低照度环境下拍摄,能够大幅降低噪点。
虽然以CMOS技术为基础的百万像素摄像机产品在低照度环境和信噪处理方面存在不足,但这并不会根本上影响它的应用前景。
而且相关国际大企业正在加大力度解决这两个问题,相信在不久的将来,CMOS的效果会越来越接近CCD的效果,并且CMOS设备的价格会低于CCD设备。
安防行业使用CMOS多于CCD已经成为不争的事实,尽管相同尺寸的CCD传感器分辨率优于CMOS传感器,但如果不考虑尺寸限制,CMOS在量率上的优势可以有效克服大尺寸感光原件制造的困难,这样CMOS在更高分辨率下将更有优势。
另外,CMOS响应速度比CCD快,因此更适合高清监控的大数据量特点。
与CCD相比,CMOS具有体积小,耗电量不到CCD的1/10,售价也比CCD便宜1/3的优点。
与CCD产品相比,CMOS是标准工艺制程,可利用现有的半导体设备,不需额外的投资设备,且品质可随著半导体技术的提升而进步。
同时,全球晶圆厂的CMOS生产线较多,日后量产时也有利于成本的降低。
另外,CMOS传感器的最大优势,是它具有高度系统整合的条件。
理论上,所有图像传感器所需的功能,例如垂直位移、水平位移暂存器、时序控制、CDS、ADC…等,都可放在集成在一颗晶片上,甚至于所有的晶片包括后端晶片(Back-endChip)、快闪记忆体(FlashRAM)等也可整合成单晶片(SYSTEM-ON-CHIP),以达到降低整机生产成本的目的。
正因为此,投入研发、生产的厂商较多,美国有30多家,欧洲7家,日本约8家,韩国1家,台湾有8家。
而居全球翘楚地位的厂商是Agilent(HP),其市场占有率51%、ST(VLSIVision)占16%、OmniVision占13%、现代占8%、Photobit约占5%,这五家合计市占率达93%。
根据In-Stat统计资料显示,CMOS传感器的全球销售额到2004年可望突破18亿美元,CMOS将以62%的年复合成长率快速成长,逐步侵占CCD器件的应用领域。
特别是在2013年快速发展的手机应用领域中,以CMOS图像传感器为主的摄相模块将占领其80%以上的应用市场。
CMOS图像传感器属于新兴产品市场,其市场占有率变化不如成熟产业那般恒常不变,例如在1999年时,CMOS市场中,按照出货比例排名依序为Agilent、OmniVision、STM和Hyundai,其市场占有率分别为24%、22%、14%和14%,其中STM是欧洲厂商,Hyundai是韩国厂商;但只经过一年后的市场竞争,Agilent和OmniVision出货排名顺序仍然分居一、二,且市场占有率分别提升到37.7%和30.8%,而STM落居第四,市场占有率大幅滑落至4.8%,至于Hyundai更是大幅衰退只剩2.1%的市场占有率,值得一提的是Photobi在2000年度的大幅成长,全球市场占有率快速成长至13.7%,排名全球第三。
这三家厂商出货量就占全球出货量的82.2%。
从中可以分析,这个产业的厂商集中度相当密集,所以观察上述三家厂商的动态和发展,可看出许产业和技术未来发展方向。
Agilent主要的产品为第二代的CIF(352*288)HDCS-1020和第二代的VGA(640*480)HDCS-2020,主要应用在数码相机、行动电话、PDA、PCCamera等新兴的资讯家电产品之中,此外Agilent在2000年另一成功策略是和Logitech与Microsoft这两家公司策略联盟,打入了光学鼠标产品领域,但是这是非常低阶的CMOS产品,而且不是为了捕捉影像,所以在做影像感测器的全球统计时并未将此数量一并加入,但是此举可看出Agilent以CMOS技术为基础进军光学元件的规划意图。
OmniVision它主要的产品包括︰CIF(352x288)、VGA(640x480)、SVGA(800x600)和SXGA(1280x1024)。
Omnivision开发的130万像素等级的CMOS图像传感器正在被业界大量应用在数码相机中。
业界一般认为,百万像素为使用CMOS和CCD的分水岭,CMOS成功跨进这一市场,足以说明CMOS技术发展对市场的渗透度,未来可能将取代CCD成为中低档影像产品的不留应用。
Omnivision在2001年5月开发的CIF(352x288)等级的CMOS传感器,其特色为低秏电,目标市场定位在移动电话上,其产品发展策略和各大研究调查机构不谋而合,在移动电话市场上,CMOS模组的摄相模块已经成为移动通讯应用的最大量产品。
Photobit在2000年获得较大成功。
2001年Photobit率先研发出PB-0330产品型号的CMOS图像传感器,此产品特色具备单一晶片逻辑转数位的变频器,它是第二代1/4寸的VGA(640x480),同时也推出PB-0111产品型号的CMOS影像感测器,是第二代1/5寸的CIF(352x288)。
Photobit推出这两种产品主要针对数码相机和PCCamera的数位化产品,和OmniVisionCIF(352x288)定位在行动电话市场上有所区隔,其推出CIF(352x288)和VGA(640x480)这两种不同解析程度的影像感测器,行销范围意图含盖低阶和中高阶市场。
2013年业界发展了CMOS图像传感器新技术--C3D。
C3D技术的最大特点就是像素反应的均一性。
C3D技术重新定义了成像器的性能(即把系统的整体性能包括在内)并提高了CMOS图像传感器在均一性和暗电流方面的标准性能。
2014年初,美国Foveon公司公开展示了其最新发展的FoveonX3技术,立即引起业界的高度关注。
FoveonX3是全球第一款可以在一个像素上捕捉全部色彩的图像传感器阵列。
传统的光电耦合器件只能感应光线强度,不能感应色彩信息,需要通过滤色镜来感应色彩信息,称之为Bayer滤镜。
而FoveonX3在一个像素上通过不同的深度来感应色彩,最表面一层感应蓝色、第二层可以感应绿色,第三层感应红色。
它是根据硅对不同波长光线的吸收效应来达到一个像素感应全部色彩信息,已经有了使用这种技术的CMOS图像传感器,其应用产品是“SigmaSD9”数码相机。
这项革新技术可以提供更加锐利的图像,更好的色彩,比起以前的图像传感器,X3是第一款通过内置硅光电传感器来检测色彩的。
FoveonX3的技术对于传统半导体感光技术来说有很大的突破,也有颠覆传统技术的效果,相信FoveonX3会有很好的前景。
在高分辨率像素产品方面,日前台湾锐视科技已领先业界批量推出了210万像素的CMOS图像传感器,而且已有美商与台湾的光学镜头厂合作,将在第三季推出此款CMOS传感器结合镜头的模组,CMOS应用已经开始在200万像素数码相机产品中应用。
CMOS线阵图像传感器DLIS-2K---世界上最快的单端口重新配置的线性图像传感器测量范围:200nm~1100nm输出信号:数字型DLIS-2K线阵图像传感器包括4行像素,每行有2081个光学像素和16黑像素。
其中3行为4x4micron方形像素,另一行为4x32micron长方形像素。
通过运用CorrelatedMulti-Sampling(CMS)方法,其等效灵敏度可达160V/lux-s。
每一行可任意控制曝光及输出。
此外,背景采样可使用常规CorrelatedDoubleSampling(CDS)值或设为用户控制的环境光值。
传感器由3线串口控制,集成了的专利技术(D/AD),XtremeIX和来最大的实现应用功能。
拓展阅读:2k的家族DLIS-可配置的线扫描CMOS图像传感器。
该DLIS-2K的传感器都是使用大楼的先进光电二极管(APD)的像素的进程,并与潘那维申专利的成像像素的IP架构。
这些重新配置的线性图像传感器以低成本提供高性能,并结合高灵敏度,高速,多功能,以解决消费者,工业,汽车和科技市场中的许多应用。
据分析,从全球工业公司是世界图像传感器市场价值预计报告117亿美元上升到2012年。
Overall,图像传感器已经扩张,如摄录机,保安和电脑摄像头,便携式通信设备和消费电子应用,在工业和商业部门的领域,如生物识别技术,机器视觉,广播,电影摄影机和药品。
在汽车行业,有角速率增加,占用座位,巡航控制传感器,车道偏离系统和后视相机的需求。
该DLIS-2K的成像仪是四线传感器,具有11位A/D转换,高动态范围,以及相关的多采样(CMS)的提高灵敏度。
该传感器可用于光谱学,条形码,触摸屏,光学字符识别,机器视觉,测量和其他应用程序。
在这些专利技术的进步使产品在图像采集与读出,包括灵活性:环境光减法,过采样,非破坏性读取模式,不同的集成,自动阈值和一个120MHz的像素读出了前所未有的高解析度模式装箱。
该DLIS传感器周围环境的结合到12位数字化和自动阈值光减法。
这提供一个简单的二进制输出芯片,允许对条码,触摸屏或任何应用程序,需要找到一个位置或一个系统的许多部件的质心去除。
用户还可以输入模拟信号,即应用程序可能需要有数字化。
该操作模式可以混合或匹配,有四个可能的组合像素为许多不同应用的最佳解决方案,让行。
“的目标是要解决在一个高度竞争力的价格点,扩大条码和一个可编程的图像传感器触摸屏市场。
塔的CMOS图像传感器技术和制造能力是世界一流,的设计团队之间和塔的工程师密切的互动有助于实现快速上马生产,说:”杰弗里Zarnowski,潘那维申影像公司首席技术官。
“很高兴潘那维申的线性图像传感器的家庭,因为这些产品将极大地推动各类市场的无数的设备生产的能力。
通过结合的高级光电二极管(APD)的像素的进程,并与潘那维申公司的专利成像架构像素的IP,已经启用的成像特征以前没有线性成像实现的,博士说:”阿维斯特鲁姆,副总裁兼总经理塔的专业业务部塔半导体。
利用塔的0.18微米技术使片上,位可选,模拟到数字转换器,以及更高的数据传输速率比前产品。
塔的APD的过程中表现出改善和像素的IP为超过标准光电二极管灵敏度高电荷转移特性。
该塔的技术和潘那维申影像与建筑结合,使灵敏度4×32微米的像素超过100伏/Lux.Sec。

『叁』 宽动态的基本概念

广义上的“动态范围”是指某一变化的事物可能改变的跨度,即其变化值的最低端极点到最高端极点之间的区域,此区域的描述一般为最高点与最低点之间的差值。这是一个应用非常广泛的概念,在谈及摄像机产品的拍摄图像指标时,一般的“动态范围”是指摄像机对拍摄场景中景物光照反射的适应能力,具体指亮度(反差)及色温(反差)的变化范围。
宽动态摄像机比传统只具有3:1动态范围的摄像机超出了几十倍。自然光线排列成从120,000Lux到星光夜里的0.00035Lux。当摄像机从室内看窗户外面,室内照度为100Lux,而外面风景的照度可能是10,000Lux,对比就是10,000/100=100:1。这个对比使人眼能很容易地看到,因为人眼能处理1000:1的对比度。然而以传统的闭路监控摄像机处理它会有很大的问题,传统摄像机只有3:1的对比性能,它只能选择使用1/60秒的电子快门来取得室内目标的正确曝光,但是室外的影像会被清除掉(全白);或者换种方法,摄像机选择1/6000秒取得室外影像完美的曝光,但是室内的影像会被清除(全黑)。这是一个自从摄像机被发明以来就一直长期存在的缺陷。
现代化的交通需要现代化的交通管理,为解决城市主要路段和路口的交通拥挤和阻塞状况,减少事故、违章现象,建立现代化的智能交通指挥控制系统是非常必要的。同时,对于提高城市形象,促进城市的文明和发展也有着非常重要的意义。系统设计的总体目标是:利用道路监控实施交通流量和交通运行监视,对关键路段实施交通实时控制,及时发现各种异常并采取应急措施,保证道路高速、安全、有效地运行,提高现代生活的交通水平。根据交通监控的实际需要,一般都会在交通路口、车站、商业区、高速公路收费口等重点部位安装可控摄像机或固定摄像机.本文在分析了道路监控的特殊需求后,主要针对道路监控摄像机的选型设计提出了一些建议。
选购道路监控摄像机的关注点
在视频控制系统中,无论从系统前端图象的摄取抑或到后端图象信号的记录与显示与控制,系统设备性能的好坏是鉴定系统运作成功与否的关键因素。毫无疑问,设备选型的好坏直接影响到系统的稳定可靠性、图象质量、系统使用寿命等有关建设方投资利益问题。因而系统设备选型是贯穿整个设计过程的重要环节。
道路监控系统摄像机需求分析.
对图像的清晰度和实时性有很高的要求,要求能看清车牌,若车牌号码不能被清晰地确认出来,则监控抓拍就毫无意义了。 由于道路监控需要24小时工作,需要在极暗的条件下也可以得到优质的画面。 室外道路的光线的动态范围变化较大,夏日阳光下环境照度达50000Lx-100000Lx;夜间路灯时仅为0.1Lux,变化幅度相当大。在这种情况下摄像机无论是否具有自动调整灵敏度功能即通过摄像机本身的电子快门已不可能适应这么宽的照度范围,也就无法达到控制图像效果的作用。因此必须要求摄像机具有很宽的动态范围。 在照度不好的条件下拍摄时,拍摄的动态图像不可避免的会有噪点干扰,所有要求宽动态摄像机有杰出的动态图像噪点消除功能,能够消除图像阴影和拖尾现象。
道路监控摄像机选型依据
宽动态摄像机性能中最核心的IC电路是CCD传感器芯片,工作原理是由CCD光学镜头将目标景象成像在CCD传感器上,传感器为高感度CCD,然后以每秒50场25帧(CCIR制式25Frame/s;NTSC制式30 Frame/s)图像的速度将CCD输出的信号经CDS相关采样保持电路、AGC及A/D转换电路处理后,输入到存储器中,再利用高速运算芯片和数据处理功能将存储器中已存入的影像以逐行扫描方式逐行读出,形成全视频信号。因此摄像机输出信号的质量除了选择性能上佳的CCD传感器外,数据处理芯片/处理电路也是重要的环节。
在总结多年的实践经验后,道路交通监控的设备集成和工程商都选用下述要求的摄像机:
具备高线数(500-540电视线)的工业标准摄像机。 低照度(≤0.1lux),最低照度达到0.01lux,在黑夜光照度较低的情况下,也能够获得清晰的图像效果。 采用超感度,大尺寸CCD(一般是1/2英寸CCD)。由于1/2摄像机标靶尺寸比1/3摄像机的标靶尺寸大,因此成像效果更为优良。(成像面积较大;光通量较大,光照度要求低。) 具有超宽动态拍摄功能,能在高反差以及照明突变的情况下,快速、精确的进行响应,从而获取高质量的、充分曝光的影像画面。 具有超级降噪技术,能够消除动态图像噪点,图像阴影和拖尾现象。特别是在解决由车头灯造成的路面交通监控或停车场监控问题时,低拖尾度尤其重要。 高信噪比, 白平衡自动调整等功能的快速(快门速度不能慢于1/1000秒)摄像机。 采用工业级器件,具有良好的全天候工作能力,长期运行稳定可靠。 本文拟对以下几个重点参数作说明。
1/2 EXVIEW HAD ?CCD
ccd产品问世已有30多年,从20万像素发展到500—800万像素,无论其市场规模还是其应用面,都得到了巨大的发展,可以说是在平稳中逐步提高,特别是近几年来,在消费领域中的应用发展速度更快。
ccd组件,每一个像素的面积和开发初期比较起来,己缩小到1/10以下。今后在应用产品趋向小型化,高像素的要求下,单位面积将会更加的缩小。在小型化的同时,利用各种新开发的技术,使其感光度不会因为单位面积缩小而受到影响,也同时要求其性能维持或向上提升。
以下是索尼公司按年代划分而发展的ccd传感器简介:
1、had感测器
had(hole-accumulation diode)传感器是在n型基板,p型,n+2极体的表面上,加上正孔蓄积层,这是sony独特的构造。由于设计了这层正孔蓄积层,可以使感测器表面常有的暗电流问题获得解决。另外,在n型基板上设计电子可通过的垂直型隧道,使得开口率提高,换句换说,也提高了感度。在80年代初期,索尼将其领先使用在可变速电子快门产品中,在拍摄移动快速的物体也可获得清晰的图象。
2、on-chip micro lens
80年代后期,因为ccd中每一像素的缩小,将使得受光面积减少,感度也将变低。为改善这个问题,索尼在每一感光二极管前装上微小镜片,使用微小镜片后,感光面积不再因为感测器的开口面积而决定,而是以微小镜片的表面积来决定。所以在规格上提高了开口率,也使感亮度因此大幅提升。
3、super had ccd
进入90年代后期以来,ccd的单位面积也越来越小,1989年开发的微小镜片技术,已经无法再提升感亮度,如果将ccd组件内部放大器的放大倍率提升,将会使杂讯也被提高,画质会受到明显的影响。索尼在ccd技术的研发上又更进一步,将以前使用微小镜片的技术改良,提升光利用率,开发将镜片的形状最优化技术,即索尼 super had ccd技术。基本上是以提升光利用效率来提升感亮度的设计,这也为ccd基本技术奠定了基础。
4、new structure ccd
在摄影机的光学镜头的光圈F值不断的提升下,进入到摄影机内的斜光就越来越多,使得入射到ccd组件的光无法百分之百的被聚焦到感测器上,而ccd感测器的感度将会降低。1998年索尼公司为改善这个问题,将彩色滤光片和遮光膜之间再加上一层内部的镜片。加上这层镜片后可以改善内部的光路,使斜光也可以被聚焦到感光器。而且同时将硅基板和电极间的绝缘层薄膜化,让会造成垂直ccd画面杂讯的讯号不会进入,使smear特性改善。
5、exview had ccd
比可视光波长更长的红外线光,也可以在半导体硅芯片内做光电变换。可是至当前为止,ccd无法将这些光电变换后的电荷,以有效的方法收集到感测器内。为此,索尼在1998年新开发的“exview had ccd”技术就可以将以前未能有效利用的近红外线光,有效转换成为映像资料而用。使得可视光范围扩充到红外线,让感亮度能大幅提高。利用“exview had ccd”组件时,在黑暗的环境下也可得到高亮度的照片。而且之前在硅晶板深层中做的光电变换时,会漏出到垂直ccd部分的smear成分,也可被收集到传感器内,所以影响画质的杂讯也会大幅降低。
最低照度
照度是反映光照强度的一种单位,其物理意义是照射到单位面积上的光通量,照度的单位是每平方米的流明(Lm)数,也叫做勒克斯(Lux): 1Lux=1Lm/平方米,上式中,Lm是光通量的单位,其定义是纯铂在熔化温度(约1770℃)时,其1/60平方米的表面面积于1球面度的立体角内所辐射的光量。
1LUX大约等于1烛光在1米距离的照度。为了对照度的量有一个感性的认识,下面举一例进行计算,一只100W的白炽灯,其发出的总光通量约为1200Lm,若假定该光通量均匀地分布在一半球面上,则距该光源1m和5m处的光照度值可分别按下列步骤求得: 半径为1m的半球面积为2π×1×1=6.28平方米 距光源1m处的光照度值为: 1200Lm/6.28平方米=191Lux同理、半径为5m的半球面积为:2π×5×5=157平方米 距光源5m处的光照度值为: 1200Lm/157平方米=7.64Lux
可见,从点光源发出的光照度是遵守平方反比律的。我们在摄像机参数规格中常见的最低照度,表示该摄像机能在多黑的环境下看到清晰影像,此数值越小越好,说明CCD的灵敏度越高。同样条件下,黑白摄像机所需的照度远比尚须处理色彩浓度的彩色摄像机要低10倍。黑白摄像机的灵敏度大约是0.02-0.5lux(勒克斯),彩色摄像机多在1lux以上。照度值不仅与镜头的光圈大小(F值)有关,与测试时的周边环境也有着较大的关系,以光圈大小(F值)而言,光圈愈大则其所代表的F值愈小,所需的照度愈低。 0.97lux/F0.75相当于2.5lux/F1.2相当于1.7lux/F1.0
参考环境与照度: 参照环境 大概照度 参照环境 大概照度 夏日阳光下 100000lux 室内日光灯 100lux 阴天室外 10000lux 黄昏室内 10lux 电视台演播室 1000lux 20cm处烛光 10-15lux 距60w台灯60cm桌面 300lux 夜间路灯 0.1lux 摄像机按照度可分为
普通型:正常工作所需照度1~3lux
月光型:正常工作所需照度0.1lux左右
星光型:正常工作所需照度0.01lux以下
红外型:采用红外灯照明,在没有光线的情况下也可以成像
宽动态摄像机摄像机的最低照度是指当被摄景物的光亮度低到一定程度而使摄像机输出的视频信号幅值下降为标准幅值700mV的50%--33%(视频标称值为1V,标准值为700mV):另一种最低照度为CCD上的光照度,也即是CCD的感光度。CCD的光照度值远低于摄像机的最低照度值,很多不法商人就将CCD的最低照度值标称为摄像机的最低照度值,以蒙骗不知情者,这一点尤其体现在国内的一些OEM产品以及一些杂牌、低端摄像机产品上。
低照度摄像机在市场的演进简单分为以下三步:白天彩色/晚上黑白(COLOR/MONO);低速快门(SLOW/SHUTTER)及超感度摄像机(EXVIEW HAD)。
1.白天彩色/晚上黑白(昼夜型摄像机COLOR/MONO)
此类摄像机在市场上仍有其特定的需求群,昼夜型(COLOR/MONO)摄像机是利用黑白图像对红外线感度较高的特点,在一定的光源条件,利用线路切换的方式将图像由彩色转为黑白,以便于搭配红外线。在彩色/黑白线路转换的技术演进过程中,早期曾采用2颗SENSOR(1颗彩色、1颗黑白)共用一组电路再行切换,此类摄像机已采用单一CCD(彩色)设计,在白天或光源充足时为彩色摄像机,当夜晚降临或光源不足时(一般在1LUX~3LUX)即利用数字电路将彩色信号消除掉,成为黑白图像,且为了搭配红外线,亦拿掉了彩色摄像机不可缺的红外线滤除器,此种作法虽可在夜晚达到“低照度”的目的,白天却有图像模糊,色彩不自然的缺点,并且摄像机的摄像距离会受到红外灯照射距离的限制。然而,COLOR/MONO摄像机是否属于“低照度”摄像机,仍相当具争议性,专家指出真正的“低照度摄像机”应指摄像机本身(所采用的元件、技术)可达到的功能,而白天彩色/晚上黑白的摄像机因受限于CCD灵敏度,本身并无法改变,只是利用线路切换及搭配红外光的方式将功能提升,不能算是低照度摄像机。
2.低速快门(SLOW/SHUTTER)
此类摄像机又称为(画面)累积型摄像机,是利用电脑记忆体的技术,连续将几个因光线不足而较显模糊的画面累积起来,成为一个图像清晰的画面,运用SLOW SHUTTER技术降低摄像机照度至0.008LUX/F1.2(×128),并且画面能够累积的帧数 (128帧)是属于甚至包括进口品牌再内的领先水平。此类型低照度摄像机适用于禁止红、紫外线破坏的博物馆,夜间生物活动观察,夜间军事海岸线监视等,属性较静态场所的监视。此类型的低照度摄像机,大多数为进口品牌价格昂贵,且累积帧数少(32帧)。
3.超感度摄像机(EXVIEW/HAD)
超感度摄像机(EXVIEW/HAD),又称24小时摄像机,为98年全世界最热门的机种,其彩色照度可达0.05LUX,黑白则可达0.003-0.001LUX(亦可搭配红外线以达 0LUX)不仅能清晰的辩识图像,更是实时连续的画面。 此类型摄像机主要是采用SONY元件厂于97年所推出的EXVIEW/HAD/CCD(超感 CCD),其运用专利技术将CCD每一像素的开口率提高,进而达到更低照度的要求. 这一技术的出现受到了监控市场的欢迎,对各种光照环境下均可表现出最佳的效果.特别是配合专用的红外照明设备,可以得到高清晰度的黑白图像,实现0照度的监控(完全无光的情况下)。在近红外760mm-1100mm的近红外区域,如果配合合适波长的红外照明,就可以实现清晰的黑白图像。
三星TECHWIN公司(原三星航空,国内称为三星光电子)依靠在行业30年的生产经验,在技术的不断创新和为顾客提供高质量的安防产品上,总是走在前端。其产品系列SHC-740,SHC-740,SHC-721,SDZ-330,SPD-3300等全部采用128倍帧累积技术,清晰度高达520TVL以上,信噪比达50db以上,具有日夜转换功能。特别是SHC-740(图1),采用了EX-VIEW HAD CCD,使用Samsung SVⅢ DSP芯片,在低照度技术,高清晰度有了新的突破(高达540TVL),使摄像机在几乎全黑的条件下也可以得到优质的画面,其最低照度彩色模式为[email protected],黑白模式为[email protected]? sens-up模式为0.0003 [email protected],广泛应用于国防边境,军队,高速公路
宽动态
在一些明暗反差过大的场合,一般的摄像机由于CCD的感光特性所限制,摄取的图像往往出现背景过亮或前景太暗的情况。针对这种情况,宽动态技术应运而生,较好地解决了这一问题。而在此之前,传统的摄像机一般会采取背光补偿功能来适应光线反差大的场合。
常规摄像机视场中的物体在亮度较高的背景光时,需要看门口或窗外的物体,通常采用中央背光补偿(BLC)模式,它主要是靠提升视场中央部分的亮度、降低视场四周部分的亮度来达到看清位于中央位置内物体的目的。
背光补偿,也称为逆光补偿,是把画面分成几个不同的区域,每个区域分别曝光。在某些应用场合,视场中可能包含一个很亮的区域,而被包含的主体则处于亮场的包围之中,画面一片昏暗,无层次。此时由于AGC检测到的信号电平并不低,因此放大器的增益很低,不能改进画面主体的明暗度,当引入逆光补偿时,摄像机仅对整个视场的一个子区域进行检测,通过求此区域的平均信号电平来确定AGC电路的工作点。由于子区域的平均电平很低,AGC放大器会有较高的增益,使输出信号的幅值提高,从而使监视器上的主体画明朗,大大降低背景画面与主体画面的主观亮度差,整个视场的可视性得到改善.逆光补偿虽然改善了拍摄主体的亮度,但是图像质量或多或少会劣化下降。
而宽动态这一技术是同一时间曝光两次,一次快,一次慢,再进行合成使得能够同时看清画面上亮与暗的物体。虽然二者都是为了克服在强背光环境条件下,看清目标而采取的措施,但背光补偿是以牺牲画面的对比度为代价的,所以从某种意义上说,宽动态技术是背光补偿的升级。
三星TECHWIN(三星光电子)由于企业背景的原因,在国家军工方面有着丰富的经验,产品更偏重于工业用品,耐用性和稳定性。并且具有多年来积累的光学和半导体技术经验。在内置专业半导体芯片的安防监控摄像机和嵌入式硬盘录像机等产品上有着良好的表现。其独立研发的第三代超级图像技术SVⅢ(图5),配置了双速扫描CCD,能够拍摄出具有宽动态效果的图像。并且使用了两个12位数字输入端,使SVⅢ拥有超过80db的宽动态范围,大量的数字信息经过23位的数据总线传输到DSP后,DSP进行内部处理,确保了没有数据丢失。然后宽动态范围通过非线性的适应性WDR压缩算法压缩成10位输出。
采用了适应性抗马赛克色彩再生算法,彩色达到540线,黑白570线。
强大的灵敏度增强技术,提供动态的3D过滤后的图像,优化了信噪比。并且在保持全实时效果的低照度条件下,增强可见度。
采用了高级的局部区域强化对比技术,即使在较差的照度条件下也能得到理想的对比度。
采用独特的色彩控制算法可以扩大白平衡使用范围,即可以在很宽的色温范围内,将颜色准确真实的再现。这也意味着在很低照度条件下也能支持使用彩色模式并且很好的进行白平衡。
典型应用
低照度、 宽动态摄像机用于道路监控的重点是高速公路收费监控系统,主要是对收费站的车道、收费广场、收费亭的收费情况,对收费车道通过的车辆类型、收费员的操作过程以及收费过程中的突发事件和特殊事件进行观察和记录,实施有效的监督。。尤其是在晚上,收费站工作人员需要看清车牌,而一般情况下,车灯打开后,路上的环境照度与车牌的照度形成了一定的动态范围,传统摄像机难以“看清”,所以对低照度、宽动态摄像机有了需求。
其次是电子警察系统,过闭路电视监控和冲红灯自动摄录等手段,提高指挥中心的直观性、实时调动能力和对交通事故、意外事件的响应能力,以及增强查处违章的客观性,并对控制区域进行全面协调控制,提高车辆的通行能力。由于需要看清车牌,24小时监控,所以对低照度,宽动态摄像机有需求。
另外城市商业街中也有一定的应用,用以掌握一些繁华路口的交通情况,路段周围车辆的运行情况和,行人的流量情况和交通治安情况等问题。

『肆』 什么是DPS和PIXIM什么关系

我们先来说说宽动态,说起宽动态先来一段解释性的文字。所谓动态是指动态范围,是指某一可改变特性的变化范围,那么宽动态那就是指着一变化范围比较宽,当然是相对普通的来说。那我们又迷糊了,我们天天说宽动态,那我们是说的什么东西的变化范围宽呢。这其实就得怪我们厂家没说清楚了,其实很多厂家自己都说不清楚,他怎么能给别人讲清楚呢?呵呵!闲话少说,我们具体而言针对摄像机,它的动态范围是指摄像机对拍摄场景中光线照度的适应能力,量化一下它的指标,用分贝(dB)来表示。举个例子,普通CCD摄像机的动态范围是3dB,宽动态一般能达到80dB,好的能达到100dB,像北京中天致远科技有限公司的宽动态摄像机最高能达到120dB,是目前已知宽动态摄像机所能达到的最高指标,即便如此,跟人眼相比,还是差了很多,人眼的动态范围能达到1000dB,而更为夸张的是鹰的视力更是人眼的3.6倍,可见,科技发展到今天跟我们自身相比还是落下了很大的差距,但我相信,在不久的将来,我们还是能做到的。那么所谓超级宽动态,超宽动态又是什么概念呢?其实,这都是人为炒作的功劳,各个商家为了吸引众多的买家,就超出了什么超级宽动态,超宽动态等等。实际上目前只有所谓的一代,二代的区别。早期摄像机厂家为了提高自身摄像机的动态范围,采用两次曝光成像,然后叠加输出的做法。先对较亮背景快速曝光,这样得到一个相对清晰的背景,然后对实物慢曝光,这样得到一个相对清晰的实物,然后在视频内存中将两张图片叠加输出。这样做有个固有的缺点,一是摄像机输出延时,并且在拍快速运动的物体时存在严重的拖尾,二是清晰度仍然不够,尤其在背景照度很强,事物跟背景反差较大的情况下很难清晰成像。那么二代又是什么呢?这就是我们所要讲的DPS。什么是DPS(Digital Pixim Processeor),DPS是一种图像传感器,就像我们说的CCD图像传感器,功能是一样的。实际上它是一种COMS图像传感器。COMS图像传感器?大家要问了,COMS图像传感器能做宽动态,对了,大家不要奇怪,COMS图像传感器不光能做宽动态,而且还要比CCD做的更好。最近几年COMS图像传感器取得了巨大的发展,也许以前COMS图像传感器是没有CCD的效果好,但是从今天开始不一样了。为什么我们天天在喊数字化的今天,图像传感器就不能数字化呢。其实COMS图像传感器在某些应用领域早已领先CCD了,譬如现今广为使用的指纹识别仪,CCD早已被淘汰,早已被COMS取而代之。DPS是Digital Pixel System的缩写,是数字像素系统的意思,我根据字面直译的,译得不好大家别见笑,它是美国PIXIM公司申请的一项专利,到现在大家应该了解DPS根PIXIM之间的关系了吧。目前所有使用DPS传感器的宽动态摄像机,都是基于PIXIM公司提供的方案,目前全世界只此一家别无分店。看了一堆的文字不免有些烦闷,下面来两张图片,这是北京中天致远科技有限公司提供的,让大家来比比看看具体的效果。DPS专利技术是美国PIXIM公司申请的图像传感器专利技术,使用这项专利技术的图像传感器就称做DPS图像传感器。利用DPS图像传感器,结合美国PIXIM公司的宽动态处理技术,是目前行业内公认的所能达到的最大动态范围。如果说号称140dB的厂家也使用的是美国PIXIM公司的方案,那么他的指标就有可能虚报了,如果他不是用美国PIXIM公司的方案,那么他根本就不可能达到140dB。DPS 缺点?我们来分析一下给大家听!从CMOS sensor 原理上分析.影响CMOS sensor,图象质量的四大因素!1 QE (quanta efficiency ),量子效率.跟工艺有关!DPS 是Pixim 的产品,Pixim 是一家 美国的Fabless (无晶圆设计公司).他的CMOS sensor 是在中芯国际,TSMC代工的.这两家在CMOS sensor 的工艺上是比较差的!所以他的QE (quanta efficiency ,量子效率.看到没有量子力学多伟大)很低.这两家代工厂的QE还是比不上Micron, Samsung 的工艺.2 Fill facty.光电二极管的有效面积.DPS 是3T (三个晶体管)加 一个AD.所以他的 Fill facty <45%. 3 CMOS 工艺, 1/f . 漏电流,暗电流控制.这个不是 Pixim 能控制的. 还是那两家代工厂工艺差!控制的不好!你想想 Intel 都45nm 了,TSMC 65nm.4 FPN 固定波形杂讯.DPS 那里不好呢!Fill facty 太差了.直接后果低照度奇差无比.30lux 以下.已经非常大问题. 有些做 DPS的厂家标 0.5Lux ,1 lux .真是厉害,人有多大胆,地有多高产.不过,他确实能做到,怎么做到呢!不实时啊!30lux 以下的低光环境下,就开起 slow shutter (帧累积), 为什么用slow shutte.你想想用5 frames/ s 的曝光时间是不是很好!所以有些DPS敢标0.5Lux慢!!这会有什么后果,对了.5 frames/s ,不实时啊!直接感觉就是拖影.就象看动画一下.PS不可以用在道路监控上面!DPS可以用在光线环境好的情况下.DPS replace CCD. It is a long way to go!DPS 优点:1 Wide dynamic range. 宽动态.90-120dB. 直接的表现.比如在人在背光的时候, 如果不开起背光补偿,CCD是看不清人面的.但开了背光补偿.就看不清后面强光的 环境.这是 DPS, 最大的优点.2 漏光控制.CCD在看强光,比如太阳的时候,会有光栅出现.DPS就没有这个现象.缺点太多:1 低照度差.30Lux 以下就要补光.不然会开启 slow shutter,就变成拖影.(这是曝光不足造成的拖影)2 运动图象拖影.当运动问题以高速 80K/M 以上的时候.DPS拖影会严重.这是DPS sensor 结构决定的.但可以解决,加大曝光量.(加大曝光量有两方法,一增加曝光时间,二增加环境照度). 但在监控市场上,工程这两种方法都不太理想.当你增加曝光时间,那就变成帧数不足,另外增加环境照度不是乙方可以随便控制的.3 DPS白平衡算法有小许问题.在看色温变化严重的环境,DPS 会变化很严重. 4 价格太高了.Sony 480 高一半.DPS price = (1.5~~~1.8)*Sony 480TVLDPS适合那里呢?环境照度有保证的地方.有明暗的对比的地方.有个奇怪的问题! 为什么开发DPS的公司.不加红外灯算了. DPS的照度真是太差太差了!!!不要想用DPS来做运动图象监控. DPS不要神话,也不要贬低.它有他特定的市场!!

『伍』 电视的专利申请

随着1875年电话发明以及无线电和电影技术的发展,很多科技人员着手研究图像传送技术,想应用最新科技成果,对静止或活动的景物、影像进行光电转换,并将电信号传送出去使其他地方能即时重现画面。首先发明和实现这样电视系统的是英国工程师J.L.贝尔德(John Logie Baird)。贝尔德于1923年7月26日向英国专利局申请了名称为“通过有线或无线电波通信方式,传送图像、肖像和场景的系统”,并于1924年10月9日获得授权,专利号为GB222604。该系统与其说是电子式的还不如说是机械式的。它是基于德国柏林的俄裔德国人P·尼普可夫(Paul Niphow)。名称为“电子望远镜”的1884年的德国DE30105号专利,“电子望远镜”包括两个相同的旋转盘,一个设于发送机上,另一个设于接收机上。每个盘有24个方孔,还有传输图像的光电管。它出于这样的运动图像的构思,即一系列静止图像变换得足够快的时候,就会在视觉上产生活动画面的效果。但是,由于技术上原因,该专利并未实施。
贝尔德上述专利提示了一种传送图像、肖像和场景的方法和系统,将景物的每一区域接连地投射到光敏元件上,并且接收机利用该光敏元件引起的电流变化点亮设置成屏幕的一系列小灯,在屏幕上这些小灯变化的照明度形成了再现原画面。下面结合附图和实施例进一步说明该发明:要传送的场景或目标A通过一透镜B聚焦在旋转盘D上,形成成像C,该盘D上穿有一系列按螺旋线排列的小孔。成像C可以是1英吋×1英吋的,盘上的孔直径可以是1/18英吋(或1/32英吋)。这些孔圆周地分布约1英吋,第2孔比第1孔离中心近1/18英吋(或1/32英吋),第3个孔比第2个孔离中心近1/18英吋(或1/32英吋),以此类推直到第18个孔(或第32个孔),以致于在盘D转动时,要输送的画面的每个部分接连地通过一个1/18英吋的孔(或1/32英吋的孔)。在盘的后面有一个光敏元件E,通过穿孔M不同的光照到该光敏元件上,导致从电池F流过光敏元件电流变化,并该变化电流经过诸如热离子真空管等放小后,通过导线或元件输送到接收机,接收机装有一个与发送机的盘D完全同步旋转的臂G,该臂端头有电刷并与一系列触头H相通,每个触头与一个小灯相连接,而这些灯以行列排列形成一个屏幕K。每个孔扫过画面的一个条带,并在接收屏上通过一列灯将条带再现,这样每孔有其相应的列的灯与其对应,可使用很多灯,灯越多再现画面越好。如果相应瞬时孔对着画面明亮部分,灯会很亮;如果那瞬间孔对着画面黑的部分灯就会暗淡;屏幕上灯的不同明暗度再现了画面,由此构成一幅幅图像。
贝尔德生于1888年。他曾在拉奇菲尔德高等学校、皇家技术学院和格拉斯哥小学学习,因第一次世界大战爆发而辍学。他是一个不成功的商人,开始投入研究工作时,他很贫困,没有经费,他只好利用茶叶箱、饼干盒、导线、腊等废旧物品,自己动手做实验装置,连旋转盘都是用卡片纸板做的,画面从顶到底30线,每秒传输10次。
1924年,他成功地在几米范围内发射了马耳他十字小画面。1925年10月2日,他终于成功地使年轻勤杂人员威廉·台英顿(Willian Taynton)的脸出现在电视机上。他与百货公司签订了以电视传送表现获取酬金的合同,并不断地改进系统。
1928年,贝尔德开始将其电视系统正式播送,并且开始研究和试验彩色电视。
1929年英国广播公司(BBC)与贝尔德签订许可合同,采用他的发明试验性播出电视。
1936年,BBC利用无线电,在世界上首次实现了定时电视广播。但是,贝尔德的电视采用机械式技术路线的局限性也显现出来了。尽管他作了很小努力,但是传送的画面质量一直存在问题,扫描精度受转动速度限制,图像清晰度不够,闪烁画面使观众头疼。在这一领域当时是很活跃的,在贝尔德根据机械扫描原理从事电视系统研究时,美国的发明人在进行电子扫描的研究,力图采用另一种技术路线—电子式电视系统。 俄裔美国工程师弗拉基米尔·K·兹沃尔金(Vladimir Eworykin)J1923年12月29日申请,于1938年12月20日才批准公布的US2141059专利,发明了显像管和摄像管技术以及电视系统,为电子式电视系统奠定了基础,尽管开始时电子式电视系统并不完善,效果还不如机械式的,但是,在兹沃尔金、美国无线公司和英国EMI公司等努力下,技术进步很快,如扫描线1929年为48线,1935年达到343线。
尽管兹沃尔金的 映像管让电视具有了实用性,但是它却无法使电视的播送很容易或是完美。“光电摄像管”——正如它常常会被电视人员提及的那样——能够产生清楚、清晰的图像,但是对光却不是很敏感。在明亮的日光下,一切都很正常,但是在演播室中,则需要巨小的光量——比电影业所需的光量还要多。热度水平超过了100华氏度,男女演员需要化妆(包括浓厚的眼影盒唇彩)来抵消旧时的电弧灯所散发出的炫目的光。兹沃尔金与他的工作小组要补救这一点!
1936年底、1937年初,在英国伦敦北部的亚力山德拉宫(Alexandra Palace)设立了EMI公司电子式电视系统和贝尔德的机械式电视系统两个系统,并隔周轮番使用,比较两个系统哪个效果好。电子式品种技术一等。3个月后,BBC告诉贝尔德将关他的系统。电子式电视系统成为电视的主流系统。贝尔德于1946年逝世于英国苏塞克斯郡.贝尔克斯希尔(Bexhill,Sussex)。

『陆』 紫外可见分光光度计选购

我建议你看一下上海现科分光仪器有限公司的754紫外可见分光光度www.shfgyq.com他们使用的是专利的独特扫描机构,波长200-1000,价格在同行业中较低的。同时,他们在分光光度计上化了很大的力量,申请了许多专利这在同行业中是没有的。